本文是LLM系列文章,针对《RetroLLM: Empowering Large Language Models to Retrieve Fine-grained Evidence within Generation》的翻译。
摘要
大型语言模型(LLMs)表现出非凡的生成能力,但经常出现幻觉。检索增强生成(RAG)通过整合外部知识提供了一种有效的解决方案,但现有方法仍面临几个局限性:单独检索器的额外部署成本、检索到的文本块中的冗余输入token,以及缺乏检索和生成的联合优化。为了解决这些问题,我们提出了RetroLLM,这是一个统一的框架,将检索和生成集成到一个单一的、有凝聚力的过程中,使LLM能够通过约束解码从语料库中直接生成细粒度的证据。此外,为了减轻约束证据生成过程中的错误修剪,我们引入了(1)分层FM索引约束,在证据生成之前生成语料库约束的线索来识别相关文档的子集,减少了无关的解码空间;以及(2)前瞻性约束解码策略,考虑未来序列的相关性以提高证据准确性。在五个开放域QA数据集上进行的广泛实验证明了RetroLLM在域内和域外任务上的卓越性能。该代码可在https://github/sunnynexus/RetroLLM