RetroLLM: Empowering Large Language Models to Retrieve Fine-grained Evidence within Generation

本文是LLM系列文章,针对《RetroLLM: Empowering Large Language Models to Retrieve Fine-grained Evidence within Generation》的翻译。

RetroLLM:增强大型语言模型在生成过程中检索细粒度证据的能力

摘要

大型语言模型(LLMs)表现出非凡的生成能力,但经常出现幻觉。检索增强生成(RAG)通过整合外部知识提供了一种有效的解决方案,但现有方法仍面临几个局限性:单独检索器的额外部署成本、检索到的文本块中的冗余输入token,以及缺乏检索和生成的联合优化。为了解决这些问题,我们提出了RetroLLM,这是一个统一的框架,将检索和生成集成到一个单一的、有凝聚力的过程中,使LLM能够通过约束解码从语料库中直接生成细粒度的证据。此外,为了减轻约束证据生成过程中的错误修剪,我们引入了(1)分层FM索引约束,在证据生成之前生成语料库约束的线索来识别相关文档的子集,减少了无关的解码空间;以及(2)前瞻性约束解码策略,考虑未来序列的相关性以提高证据准确性。在五个开放域QA数据集上进行的广泛实验证明了RetroLLM在域内和域外任务上的卓越性能。该代码可在https://github/sunnynexus/RetroLLM

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值