本文是LLM系列问题,针对《SFT Memorizes, RL Generalizes: A Comparative Study of Foundation Model Post-training》的翻译。
摘要
监督微调(SFT)和强化学习(RL)是基础模型训练后广泛使用的技术。然而,它们在增强模型泛化方面各自的作用尚不清楚。本文研究了SFT和RL在泛化和记忆方面的比较效果,重点研究了基于文本和视觉环境。我们介绍了算术推理纸牌游戏GeneralPoints,并考虑了现实世界的导航环境V-IRL,以评估用SFT和RL训练的模型如何泛化到文本和视觉领域中看不见的变体。我们发现,强化学习,特别是在基于结果的奖励训练中,在基于规则的文本和视觉环境中都具有普遍性。相比之下,SFT倾向于记忆训练数据,并在任何一种情况下都难以进行非分布的泛化。进一步的分析表明,强化学习提高了模型的潜在视觉识别能力,有助于增强其在视觉领域的泛化能力。尽管强化学习具有优越的泛化能力,但我们表明SFT仍然有助于有效的强化学习训练:SFT稳定了模型的输出格式,使后续的强化学习能够实现其性能提升。这些发现证明了强化学习在复杂、多模态任务中获取可概括知识的优势。