SmolVLM: Redefining small and efficient multimodal models

在这里插入图片描述

主要内容

  1. 背景与挑战:视觉语言模型(VLMs)能力提升但资源需求大,小模型常借鉴大模型设计导致内存使用低效。
  2. 模型设计
    • 架构探索:分析视觉编码器和语言模型间的计算分配,发现平衡的参数分配更优;扩展上下文长度、采用像素混洗等策略提高模型性能。
    • 指令微调:研究视觉和文本标记化、数据组合等对模型性能的影响,如学习位置标记优于字符串标记,谨慎使用大语言模型微调文本数据等。
  3. 实验结果
    • 构建模型变体:构建SmolVLM - 256M、SmolVLM - 500M和SmolVLM - 2.2B三种模型,适用于不同计算环境。
    • 训练数据:分视觉和视频阶段训练,使用多种数据集并合理分配数据比例。
    • 性能评估:在多个视觉语言和视频基准测试中表现出色,内存使用效率高;在边缘设备上
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值