A SCALING LAW FOR TOKEN EFFICIENCY IN LLM FINE-TUNING UNDER FIXED COMPUTE BUDGETS

文章主要内容

本文探讨了在固定计算预算下微调大型语言模型(LLMs)时的缩放规律,强调了数据构成(即示例数量和平均标记长度)对标记效率的影响。传统方法仅通过总标记数衡量训练数据,而本文提出将数据集体积定义为示例数(N)与平均标记长度(L)的乘积(V=N·L),并引入新的缩放定律公式:
Accuracy = A V β M γ + E \text{Accuracy} = A V^{\beta} M^{\gamma} + E

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值