Can Prompting LLMs Unlock Hate Speech Detection across Languages? A Zero-shot and Few-shot Study

一、文章主要内容总结

本文聚焦于多语言仇恨言论检测领域,对大型语言模型(LLMs)在零样本和少样本提示下的表现展开研究。通过运用多种提示策略(涵盖零样本提示、少样本提示、思维链提示、角色扮演提示等),针对西班牙语、葡萄牙语、德语、法语、意大利语、土耳其语、印地语和阿拉伯语这8种非英语语言的仇恨言论检测任务,对LLaMA、Qwen、Aya、BloomZ等 instruction-tuned 多语言大模型的性能进行评估,并与微调后的编码器模型(像XLM-T、mDeBERTa)进行对比。

核心发现如下:
  1. 提示设计的关键作用:不同语言适配的提示策略存在差异。例如,Aya-101模型借助基于定义和区分的提示能实现最佳性能,而Qwen模型在NLI和角色扮演提示下表现更为出色。
  2. 零样本与少样本提示的表现:在真实世界测试集里,提示方法的性能比不上微调后的编码器模型,但在功能测试集(如HateCheck基准)中,提示方法展现出更强的泛化能力,尤其是少样本提示(通常为5样本)能显著提升功能测试的效果。
  3. 数据规模的影响:当训练数据有限时(例如西班牙语100-200样本、印地语300-400样
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值