文章主要内容总结
本文介绍了字节跳动开源的多模态基础模型BAGEL,其核心目标是通过大规模交错多模态数据预训练,实现统一的多模态理解与生成能力。BAGEL采用仅解码器架构和混合Transformer专家(MoT)设计,在文本、图像、视频和网页数据上进行训练,展现出复杂多模态推理的新兴能力,如自由形式图像操作、未来帧预测、3D操作和世界导航等。实验表明,BAGEL在标准基准测试中显著优于开源模型,并通过数据构建协议和模型架构创新,缩小了与专有系统(如GPT-4o、Gemini 2.0)的差距。
文章创新点
-
统一多模态架构
采用MoT架构,通过共享自注意力机制实现多模态理解与生成的长上下文交互,避免传统模型的瓶颈问题。模型包含两个Transformer专家(理解与生成),分别处理文本/视觉编码器和视觉生成VAE,支持灵活的模态交互。 -
大规模交错多模态数据
构建包含文本、图像、视频和网页的高质量交错数据集,尤其引入视频数据以捕捉时空连续性,并通过推理增强数据(如思维链)提升多模态推理能力。数据规模达数万亿token,涵盖多模态对话、文本-图像生成、图像操作等任务。