Token Activation Map to Visually Explain Multimodal LLMs

在这里插入图片描述

文章主要内容总结

本文聚焦多模态大型语言模型(MLLMs)的可解释性问题,提出了一种名为令牌激活图(Token Activation Map, TAM) 的新方法。与传统视觉模型(如CNN、ViT)仅生成单一输出不同,MLLMs会逐步生成多个令牌(tokens),且每个令牌的生成依赖于前文上下文,这导致上下文令牌会对后续令牌的解释产生冗余激活干扰,而现有方法往往忽略这一问题。

为解决该问题,TAM引入了估计因果推理方法,以减轻上下文干扰,同时提出秩高斯滤波器减少激活噪声。实验表明,TAM在多个数据集(如COCO Caption、OpenPSG)上显著优于现有最先进方法,且能应用于目标定位、故障案例分析、视频可视化、MLLMs视觉对比、模型理解(如颜色、形状、动作等属性)等多种场景。代码已开源(github.com/xmed-lab/TAM)。

创新点

  1. 提出TAM方法
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值