本文是LLM系列文章,针对《PCToolkit: A Unified Plug-and-Play Prompt Compression Toolkit of Large Language Models》的翻译。
摘要
提示压缩是一种创新的方法,可以有效地压缩输入提示,同时保留基本信息。为了促进快速启动服务、用户友好的界面以及与常见数据集和指标的兼容性,我们推出了提示压缩工具包(PCToolkit)。该工具包是一个统一的即插即用解决方案,用于压缩大型语言模型(LLM)中的提示,具有尖端的提示压缩器、不同的数据集和用于全面性能评估的指标。PCToolkit拥有模块化设计,允许通过便携式和用户友好的界面轻松集成新的数据集和指标。在本文中,我们概述了PCToolkit的关键组件和功能。我们在PCToolkit中对各种自然语言任务的压缩器进行了评估,包括重建、摘要、数学问题解决、问题回答、小样本学习、合成任务、代码补全、布尔表达式、多选问题和谎言识别。
1 引言
2 相关工作
3 支持的压缩器、数据集和度量
4 工具包设计
5 评估
6 结论和未来工作
最后&