医学图像分割框架

1、nnunet:Automated Design of Deep Learning Methods for Biomedical Image Segmentation

2D/3D 2019年4月

git clone https://github.com/MIC-DKFZ/nnUNet.git

2、UNETR++: Delving into Efficient and Accurate 3D Medical Image Segmentation

3D 2022年12月

GitHub - Amshaker/unetr_plus_plus: UNETR++: Delving into Efficient and Accurate 3D Medical Image Segmentation

https://arxiv.org/pdf/2212.04497.pdf

3、 MedNeXt: Transformer-driven Scaling of ConvNets for Medical Image Segmentation

3D 2023年3月

https://arxiv.org/pdf/2303.09975.pdf

4、Deep Learning for Medical Image Segmentation: Tricks, Challenges and Future Directions

2022年9月

5、Segment Anything

2023年4月

GitHub - facebookresearch/segment-anything: The repository provides code for running inference with the SegmentAnything Model (SAM), links for downloading the trained model checkpoints, and example notebooks that show how to use the model.

-----------------------------------分割线-----------------------------------------

1、CoTr:基于CNN和Transformer进行3D医学图像分割
3D 2021年   
GitHub - YtongXie/CoTr: [MICCAI2021] CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image Segmentation

2、TransUNet:用于医学图像分割的Transformers强大编码器
2D 2021年

3、TransFuse:融合Transformers和CNN用于医学图像分割
2D 2021年

4、MedT:用于医学图像分割的Transformer
2D 2021年

5、UNETR:用于3D医学图像分割的Transformer
3D 2021年
GitHub - tamasino52/UNETR: Unofficial code base for UNETR: Transformers for 3D Medical Image Segmentation

6、V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation
3D 2016年

7、UNeXt:第一个基于卷积和MLP的快速医学图像分割网络
2D 2022年

8、MCTrans:Multi-Compound Transformer for Accurate Biomedical Image Segmentation
2D 2021年

9、UTNet:用于医学图像分割的混合Transformer架构
2D 2021年

10、Progressively Normalized Self-Attention Network for Video Polyp Segmentation
2D 2021年

11、A Multi-Branch Hybrid Transformer Network for Corneal Endothelial Cell Segmentation
2D 2021年

12、SpecTr:用于高光谱病理图像分割的光谱Transformer
2D 2021年

13、TransBTS:基于Transformer的多模态脑肿瘤分割
3D 2021年

14、U-Net Transformer:用于医学图像分割的自注意力和交叉注意力
2D 2021年

15、Swin-Unet:Unet形状的纯Transformer的医学图像分割

2D 2021年

16、DS-TransUNet:医学图像分割的双Swin Transformer U-Net
2D 2021年

17、UTNet:用于医学图像分割的混合Transformer架构
2D 2021年

18、PNS-Net:用于视频息肉分割的渐进归一化自注意力网络
2D 2021年

19、ResNet3D-VAE:3D MRI brain tumor segmentation using auto-encoder regularization
3D 2018年

20、SkipDesneNet3D: 3D Densely Convolutional Networks for Volumetric Segmentation
3D 2017年

21、HyperDense-Net: A hyper-densely connected CNN for multi-modal image segmentation
3D 2019年

22、multi-stream: Densenet3D:A hyper-densely connected CNN for multi-modal image segmentation
3D 2019年

23、DenseVoxelNet: Automatic 3D Cardiovascular MR Segmentation with Densely-Connected Volumetric ConvNets
3D 2017年

24、MED3D: Transfer learning for 3D medical image analysis
3D 2019年

25、HighResNet3D: On the Compactness, Efficiency, and Representation of 3D Convolutional Networks: Brain Parcellation as a Pretext Task
3D 2017年

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值