nnunetv1实战步骤

希望找一些小伙伴,共同研究nnunetv2版代码,有意者请私聊。!!!!!!!!!!!

以下步骤推荐在linux平台下操作,bilibili地址:【你要的nnunetv1实操来了】https://www.bilibili.com/video/BV1n94y1t76n?vd_source=a4bd8a5276d0156f1f19e2e9eb9d9519


1、从git上下载源代码
https://github.com/MIC-DKFZ/nnUNet

2、下载开源数据集
https://drive.google.com/drive/folders/1HqEgzS8BV2c7xYNrZdEAnrHk7osJJ--2

3、配置环境
install_requires=[
            "torch>1.10.0",
            "tqdm",
            "dicom2nifti",
            "scikit-image>=0.14",
            "medpy",
            "scipy",
            "batchgenerators>=0.23",
            "numpy",
            "scikit-learn",
            "SimpleITK",
            "pandas",
            "requests",
            "nibabel", 
            "tifffile", 
            "matplotlib",]


4、建立数据集目录,并将下载的数据放在对应目录下

5、制作数据集json文件(对数据集的情况进行统计)
cd make_dataset.py所在目录
python make_dataset.py(生成datast.json)


6、修改代码
D:\Codes\python\nnUNet-nnunetv1\nnunet\paths.py
base = r'D:\Codes\python\nnUNet-nnunetv1\DATASET\nnUNet_raw'
preprocessing_output_dir = r'D:\Codes\python\nnUNet-nnunetv1\DATASET\nnUNet_preprocessed'
network_training_output_dir_base = r'D:\Codes\python\nnUNet-nnunetv1\DATASET\nnUNet_trained_models'

7、数据集检查
cd nnUNet_convert_decathlon_task.py所在目录
python nnUNet_convert_decathlon_task.py -i D:\Codes\python\nnUNet-nnunetv1\DATASET\nnUNet_raw\nnUNet_raw_data\Task08_HepaticVessel

8、数据预处理
cd nnUNet_plan_and_preprocess.py所在目录
python nnUNet_plan_and_preprocess.py -t 8

9、训练数据
cd run_trainning.py所在目录
python run_training.py 3d_fullres nnUNetTrainerV2 8 4(修改D盘的RAM)

10、使用训练的模型进行推理
cd predict_simple.py所在目录
python predict_simple.py -i D:\Codes\python\nnUNet-nnunetv1\DATASET\nnUNet_raw\nnUNet_raw_data\Task08_HepaticVessel\imagesTs -o D:\Codes\python\nnUNet-nnunetv1\DATASET\nnUNet_raw\nnUNet_raw_data\Task08_HepaticVessel\labelsTs -t 8 -m 3d_fullres -f 4

推荐:https://blog.csdn.net/weixin_42061636/article/details/107719274


 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值