淘宝母婴购物数据分析

一、数据集概述

​ 今天我们来看一个来着阿里云天池的数据集:淘宝母婴购物数据,有两个csv文件:

mum_baby.csv

mum_baby_trade_history.csv

1、mum_baby.csv

它包含了953个孩子的生日和性别信息,这些信息是由淘宝或天猫的消费者提供的。

描述
user_id用户 ID (Bigint).
birthdayChildren’s birthday (e.g. 20130423).
genderChildren’s gender (“0” 女, “1” 男, “2” 未知).
2、mum_baby_trade_history.csv

该表包含29971条淘宝用户的历史交易信息。

描述
ID (Bigint).
user_id用户ID (Bigint).
auction_id购买行为编号ID (Bigint).
cat_idCategory ID (Bigint). 类别ID
cat1Root category ID (Bigint). 根类别ID
propertyProperty of the corresponding item (String). 对应项的属性
buy_mountPurchase quantity (Bigint). 采购量
dayTimestamp.
3、分析方向

1.什么商品类别销量最佳?

2.用户为之购买商品的婴儿年龄、性别分布?

3.销量与月份关系?

4.用户复购情况?

二、数据预处理

以时间段较长的奶粉为例.

对配方奶粉的分段,主要是根据国际食品法典委员会制定的cac来进行划分。

婴幼儿奶粉现在大范围上基本分为一段、二段、三段,部分婴幼儿奶粉可能会分为四段、五段。

奶粉分段及适用年龄:

​ 第1段婴幼儿奶粉适合0~6个月的宝宝;

​ 第2段婴幼儿奶粉适合6~12个月的宝宝;

​ 第3段婴幼儿奶粉适合1周岁~3周岁的宝宝;

​ 第4段奶粉适合3周岁~7周岁的孩子。

7周岁最多为365*7=2555天,那么对于天数大于2560天的天数视为无效数据,删除行。

import pandas as pd

mum_baby = pd.read_csv('.\data\mum_baby.csv')
trade_history = pd.read_csv('.\data\mum_baby_trade_history.csv')

# 计算订单产生时小孩的天数
# 匹配mum_baby中user_id对应的trade_history的user_id
tample = mum_baby.merge(trade_history, how="left", on='user_id').fillna(0)

tample['birthday'] = pd.to_datetime(tample['birthday'].astype(str))
tample['day'] = pd.to_datetime(tample['day'].astype(str))
age_days = tample['day'] - tample['birthday'] 
tample.loc[:, 'age_days'] = age_days  # 计算订单产生时小孩的天数
print(tample.age_days)
# 把age_days 只保留数字部分 
j = 0
for i in age_days:
    tample.loc[j, 'age_days'] = i.days
    # tample['age_days'][j] = i.days   警告:SettingWithCopyWarning:  A value is trying to be set on a copy of a slice from a DataFrame
    j += 1
# age_days为object类型  要改为int类型  不然describe无法统计年龄天数的最值
tample.age_days = pd.DataFrame(tample.age_days, dtype=int)

# tample.describe().to_excel(r'.\result\describe.xlsx')  
# 对于age的天数负数以及最大天数为10326天、购买数量最大值达到160天,可以做处理,也可以认为是正常数据不做处理
tample[tample['age_days'] > 2560].sort_values('age_days').to_excel(r'.\data\age_days_gt7year.xlsx')
tample[tample['age_days'] < 0].sort_values('age_days').to_excel(r'.\data\age_days_lt0year.xlsx')

# print(tample[tample['age_days'] < 0].describe())
# 一般认为怀孕了再准备母婴用品会比较常见 这里 我们就以-300天以上为正常  去掉低于-300天的购买数据
# print(tample[tample['age_days'] > 2560]) #一共24行
# print(tample[tample['age_days'] < 0]) #143行
# print(tample[tample['age_days'] > 2560].index)
tample.drop(tample[tample['age_days'] > 2560].index, inplace=True)  # 删除大于2560天的行 在原始对象上修改
tample.drop(tample[tample['age_days'] < -300].index, inplace=True)  # 删除低于-300天的行
# 查看购买数量   七七八八的加起来50以内还算正常   达到160偏差有点不一般  还是删了吧
# tample.sort_values('buy_mount', ascending=False).to_csv(r'.\data\new_trade_history.csv')
tample.drop(tample[tample['buy_mount'] > 50].index, inplace=True)
print(tample.describe())
tample.to_csv(r'.\data\new_trade_history.csv')

三、数据可视化

0、导入包和数据
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np

plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False

trade_history = pd.read_csv(r'.\data\new_trade_history.csv')
mum_baby_trade_history = pd.read_csv(r'.\data\mum_baby_trade_history.csv')

1、消费者行为分析
print(mum_baby_trade_history.groupby('cat1').sum())  # 查看根类别cat1 #[6 rows x 7 columns]
result1 = pd.pivot_table(mum_baby_trade_history, index='cat1', values='buy_mount', aggfunc=np.sum)
plt.figure(figsize=(7, 5))
plt.bar(x=['28', '38', '50008168', '50014815', '50022520', '122650008'],
        height=result1['buy_mount'])
plt.title("cat1类别销量")
plt.show()

请添加图片描述

​ 由图可知,商品编号为28的销量最高,而50014815次之,而122650008的销量最低,应对此现状提高或减少生产量或者加大宣传力度。

2、不同性别用户的销售情况
data = pd.pivot_table(trade_history, index='gender', values='buy_mount', aggfunc=np.sum)
print(data)
plt.figure(figsize=(5, 5))
plt.pie(['718', '544', '43'],
        labels=['女', '男', '未知'],
        colors=['r', 'b', 'g'],
        autopct='%.2f%%')
plt.title("性别与购买数量的销售关系")
plt.show()

请添加图片描述

​ 由图可知,婴幼儿为女孩的销售量较女孩更大一些,而未出生购买商品的用户占比很小,所以应该加大用户家婴幼儿是女孩的推广力度以及产品制造。

3、不同性别购买商品种类的关系
data = pd.pivot_table(trade_history, index='cat1',
                         columns='gender',
                         values='buy_mount',
                         aggfunc=np.sum)
plt.figure(figsize=(12, 5))
plt.subplot(221)
plt.bar(x=['28', '38', '50008168', '50014815', '50022520', '122650008'],
        height=data[0], color='r')
plt.subplot(222)
plt.bar(x=['28', '38', '50008168', '50014815', '50022520', '122650008'],
        height=data[1], color='b')
plt.subplot(223)
plt.bar(x=['28', '38', '50008168', '50014815', '50022520', '122650008'],
        height=data[2], color='g')
plt.xlabel("商品种类")
plt.ylabel("销售数量")
plt.show()

请添加图片描述

4、销量与月份关系
mum_baby_trade_history["day"] = mum_baby_trade_history['day'].apply(lambda x:datetime.datetime.strptime(str(x),"%Y%m%d"))
mum_baby_trade_history['Month'] = mum_baby_trade_history.day.astype('datetime64[M]')  # 设置成月份形式
print(mum_baby_trade_history)
data_month = mum_baby_trade_history.groupby('Month', as_index=False)  # 按月份分类
data_month.buy_mount.sum()  # 按月份汇总
df = data_month.buy_mount.sum()  # 新建汇总列表
plt.figure(figsize=(20, 5))
plt.plot(df["Month"], df["buy_mount"])
plt.show()

请添加图片描述

	分析波峰:在每年的10到11月份左右会有一个大波峰,每年的5月以及9月左右会有一个小波峰,在这段时间销量较同期会有一个明显的涨幅

推测1:节日因素,在5月有劳动节,母亲节;9月有中秋节;而是10月到11月左右有国庆节、万圣节、立冬、感恩节等节日,平台在这些节日可能绘有促销打折,这时随着价格降低需求量会增加,同时销售量也会增加。
推测2:双十一打折力度高,淘宝双十一是从2009年开始便存在的大型购物促销狂欢日,而又伴随着即将到来的春节假期,顾客可能进行囤货,结合两个因素导致需求量大幅上升,所以在11月前会出现一个大型的销量波峰。
结论:在5月与9月以及11月需要加大供货量,保证供需平衡。

分析波谷:每年的1月左右会出现一个明显的销量波谷,说明这段时间的销量较同期低。
推测:1月份正值春节,店铺休息,而开着的店铺肯定会抬高物价,而用户在11月进行囤货所以导致1月份的需求量减小,出现销量波谷。
结论:1月销量惨淡,需要考虑减少进货量的问题,适当降低物价拓宽销售渠道加大宣传力度。

5.用户复购率分析
data_du = mum_baby_trade_history[mum_baby_trade_history.duplicated('user_id')]  # 查看复购数据
print(data_du.info())
<class 'pandas.core.frame.DataFrame'>
Int64Index: 27 entries, 6527 to 29192
Data columns (total 7 columns):
 #   Column      Non-Null Count  Dtype 
---  ------      --------------  ----- 
 0   user_id     27 non-null     int64 
 1   auction_id  27 non-null     int64 
 2   cat_id      27 non-null     int64 
 3   cat1        27 non-null     int64 
 4   property    25 non-null     object
 5   buy_mount   27 non-null     int64 
 6   day         27 non-null     int64 
dtypes: int64(6), object(1)
memory usage: 1.7+ KB
None

sale_fu = pd.pivot_table(data_du,index='cat1',values='buy_mount',aggfunc=np.sum)
print(sale_fu)
          buy_mount
cat1               
28                8
38                4
50008168         19
50014815          2
plt.figure(figsize=(5,5))
plt.bar(x=['50014815','38','28','50008168'],
        height=['2','4','8','19'])
ax = plt.gca()
ax.set_xlabel("商品分类")
ax.set_ylabel("销量")
plt.show()

请添加图片描述

​ 共29971条订单记录而复购率仅为0.09%,用户粘性差,可能由于多种原因共同导致,其中可能包括产品质量差,客服服务态度差,售后保障差等多种原因。商家必须要仔细查找更多原因来保证后续提高销售质量,提高用户的复购率。
height=[‘2’,‘4’,‘8’,‘19’])
ax = plt.gca()
ax.set_xlabel(“商品分类”)
ax.set_ylabel(“销量”)
plt.show()


[外链图片转存中...(img-q6KNOYAN-1661584155935)]



​		共29971条订单记录而复购率仅为0.09%,用户粘性差,可能由于多种原因共同导致,其中可能包括产品质量差,客服服务态度差,售后保障差等多种原因。商家必须要仔细查找更多原因来保证后续提高销售质量,提高用户的复购率。
### 移动设备用户年龄和性别预测方法 #### 数据收集与预处理 为了构建有效的模型来预测用户的年龄和性别,首先需要从移动设备中获取大量有用的数据。这些数据可能包括但不限于应用使用习惯、浏览历史记录、地理位置信息以及社交媒体活动等[^1]。 对于所获得的数据集,在建模之前要进行必要的清洗工作,去除异常值并填补缺失项;同时还需要对类别型特征做编码转换以便于后续分析过程中的计算操作。此外,考虑到不同属性之间可能存在量纲差异较大情况,因此通常也会执行标准化或归一化处理措施以确保各维度的重要性不会因为数值范围的不同而失衡。 #### 特征工程 选取合适的特征变量是提高机器学习算法性能的关键因素之一。针对本案例而言,可以从以下几个方面入手挖掘潜在有用的输入参数: - **行为模式**:统计各类应用程序的日均启动次数及时长分布状况; - **消费偏好倾向**:依据购买商品种类划分兴趣标签群组; - **媒体娱乐内容选择喜好度**:识别音乐流派、视频风格等方面的个人独特品味。 通过上述手段提取出来的多维向量能够较好地刻画出个体间的异同之处,从而为进一步训练分类器奠定坚实基础。 #### 模型选择与评估 当准备好高质量的样本集合之后,则可以尝试采用多种监督式学习技术来进行探索实验。例如支持向量机(SVM),随机森林(Random Forests), XGBoost 等都是较为常见的选项。值得注意的是,无论选用何种具体实现方式,都应当遵循良好实践原则——即保持清晰定义好的接口契约不变性,以免因随意更改预期接收的信息格式而导致下游服务端出现问题[^2]。 最后一步便是利用交叉验证(Cross Validation)策略反复测试各个候选方案的表现优劣,并最终挑选出综合指标最优的那个作为正式部署版本投入使用前还需经过严格的线上A/B Test环节检验其实际效果是否满足业务需求标准。 ```python from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.preprocessing import StandardScaler from xgboost import XGBClassifier import pandas as pd # 假设 df 是已经完成前期准备工作的 DataFrame 对象 X = df.drop(['age', 'gender'], axis=1).values y_age = df['age'].values y_gender = (df['gender'] == "male").astype(int) scaler = StandardScaler() X_scaled = scaler.fit_transform(X) param_grid = { 'n_estimators': [50, 100], 'max_depth': [3, 6] } clf_age = GridSearchCV(estimator=XGBClassifier(), param_grid=param_grid, cv=5) clf_gender = GridSearchCV(estimator=XGBClassifier(), param_grid=param_grid, cv=5) clf_age.fit(X_scaled, y_age) clf_gender.fit(X_scaled, y_gender) ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

懒笑翻

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值