非侵入式负荷辨识方法学习笔记

参考NILM(非侵入式电力负荷监测)学习笔记 —— 使用NILMTK Toolkit,REDD数据集,CO和FHMM两种算法配置过程中遇到的问题进行记录:

问题1.安装Anaconda,cmd提示:

You probably need to delete and re-download or re-create this file.

   原因:文件夹权限未打开。

   解决方法:以管理员身份运行。

问题2.安装TensorFlow,参考anaconda(python3.6或3.7)安装tensorflow(cpu和Gpu),查看GPU命令无法执行,报错:

(tensorflow) C: \Users\ Administrator>nvidia-smi

‘nvidia-smi’不是内部或外部命令,也不是可运行的程序或批处理文件。

解决方法:参考Windows10 中使用nvidia-smi,寻找路径

C:\Program Files\NVIDIA Corporation\NVSMI

通过cd命令进入该路径,再使用nvidia-smi

 英伟达显卡版本

 问题3.安装cuda,误装入C盘,卸载与C盘文件转移同时进行,导致无法在软件管家删除,一删就弹

 解决方法:Win+R,输入“regedit”的命令,找到

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Uninstall

删除对应软件即可。

问题4.操作不当,错误删除了英伟达显卡

解决方法:进入官网,下载对应版本,此处因之前有版本截图,操作较为简洁,可参考误删nvidia进行后续操作

问题5. 配置环境配置环境NILMTK Toolkit,参考NILM(非侵入式电力负荷监测)学习笔记 —— 准备工作(一)配置环境NILMTK Toolkit,在nilm_metadata-master路径下nosetests显示ok,而在nilmtk-master路径下nosetests显示failed

解决方法:参考NILMTK的安装(environment.yml版)NILMTK安装教程(详细)——个人实践成功一招解决Conda安装卡在solving environment这一步!

 不通过命令安装environment.yml,在Anaconda  Prompt环境下直接使用命令

conda create -n nilmtk python=3.8

因为依托原博的代码,必须在python3.8环境下才能下载所用的包。 进入名为nilmtk的虚拟环境

conda activate nilmtk

激活后,输入

python setup.py develop

 新的虚拟环境创建好,再次进入pycharm需要将解释器改为当前环境。

问题6:在nilmtk-master下安装包时显示超时,环境配置失败

原因:因为超时,导致部分包未进行自动安装,需要逐个使用pip install+包名进行手动安装

解决方法:进入虚拟环境

(nilmtk)C: \Users\ Administrator>python

>>>import nilmtk

逐个将报错中提示缺少的包进行逐个安装,最后没有任何提示即安装成功。

问题7.进入pycharm运行代码,出现错误

ImportError: cannot import name '-pprint’ from 'sklearn.base’(6:Adobe anaconda conda envs nilmtk lib site-packages'sklearniClosing remaining open files:C:\Users\ADMINI~1\AppData\Local\Templnilmtk-dhgvyyyv.h5...done

原因:报错的包和现在的这个软件版本不兼容,包的版本不兼容,导入路径变了把它删了,重下了一个接近的版本就可以跑通了

解决方法:在虚拟环境中通过pip list查询所有包,通过pip uninstall命令将sklearn包删除,并重新下载其他对应版本的包,程序即可顺利运行

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值