参考NILM(非侵入式电力负荷监测)学习笔记 —— 使用NILMTK Toolkit,REDD数据集,CO和FHMM两种算法配置过程中遇到的问题进行记录:
问题1.安装Anaconda,cmd提示:
You probably need to delete and re-download or re-create this file.
原因:文件夹权限未打开。
解决方法:以管理员身份运行。
问题2.安装TensorFlow,参考anaconda(python3.6或3.7)安装tensorflow(cpu和Gpu),查看GPU命令无法执行,报错:
(tensorflow) C: \Users\ Administrator>nvidia-smi
‘nvidia-smi’不是内部或外部命令,也不是可运行的程序或批处理文件。
解决方法:参考Windows10 中使用nvidia-smi,寻找路径
C:\Program Files\NVIDIA Corporation\NVSMI
通过cd命令进入该路径,再使用nvidia-smi
英伟达显卡版本
问题3.安装cuda,误装入C盘,卸载与C盘文件转移同时进行,导致无法在软件管家删除,一删就弹
解决方法:Win+R,输入“regedit”的命令,找到
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Uninstall
删除对应软件即可。
问题4.操作不当,错误删除了英伟达显卡
解决方法:进入官网,下载对应版本,此处因之前有版本截图,操作较为简洁,可参考误删nvidia进行后续操作
问题5. 配置环境配置环境NILMTK Toolkit,参考NILM(非侵入式电力负荷监测)学习笔记 —— 准备工作(一)配置环境NILMTK Toolkit,在nilm_metadata-master路径下nosetests显示ok,而在nilmtk-master路径下nosetests显示failed
解决方法:参考NILMTK的安装(environment.yml版),NILMTK安装教程(详细)——个人实践成功,一招解决Conda安装卡在solving environment这一步!
不通过命令安装environment.yml,在Anaconda Prompt环境下直接使用命令
conda create -n nilmtk python=3.8
因为依托原博的代码,必须在python3.8环境下才能下载所用的包。 进入名为nilmtk的虚拟环境
conda activate nilmtk
激活后,输入
python setup.py develop
新的虚拟环境创建好,再次进入pycharm需要将解释器改为当前环境。
问题6:在nilmtk-master下安装包时显示超时,环境配置失败
原因:因为超时,导致部分包未进行自动安装,需要逐个使用pip install+包名进行手动安装
解决方法:进入虚拟环境
(nilmtk)C: \Users\ Administrator>python
>>>import nilmtk
逐个将报错中提示缺少的包进行逐个安装,最后没有任何提示即安装成功。
问题7.进入pycharm运行代码,出现错误
ImportError: cannot import name '-pprint’ from 'sklearn.base’(6:Adobe anaconda conda envs nilmtk lib site-packages'sklearniClosing remaining open files:C:\Users\ADMINI~1\AppData\Local\Templnilmtk-dhgvyyyv.h5...done
原因:报错的包和现在的这个软件版本不兼容,包的版本不兼容,导入路径变了把它删了,重下了一个接近的版本就可以跑通了
解决方法:在虚拟环境中通过pip list查询所有包,通过pip uninstall命令将sklearn包删除,并重新下载其他对应版本的包,程序即可顺利运行