A*与IDA*算法

本文介绍了A*算法的基本原理和其在深度优先搜索中的优化应用——IDA*。A*算法通过估价函数减少搜索路径,保证找到最优解。在IDSA*中,当当前搜索层数加上估价函数值大于迭代加深深度限制时进行剪枝。文中列举了多个例题,详细阐述了A*和IDA*在不同问题上的应用,包括广搜优化、错误后继的最少代价等,并提出估价函数的设计思路。
摘要由CSDN通过智能技术生成

A*

  A*算法是基础的启发式算法,常使用“估价函数”减少选择来用于优化搜索的速度。对于当前的状态,我们知道当前已经用了的代价,那么我们可以设计一个估价函数 f f 来估计未来的状态,当前代价+未来代价作为这个状态的预估总代价。
  那么这个估价函数值 f 需要满足 f(now)g(now) f ( n o w ) ≤ g ( n o w ) ,其中now表示当前状态,g()表示实际需要花的代价。也就是说,我们设计估价函数必须要满足:
  1、估价比实际要花的代价少
  2、最接近实际代价算法效率越高。
  后者易于理解,然而前者是为什么呢?因为假设不满足第一条,最优解可能因为估价函数比较大被压在下面而选到非最优解来拓展。
  我们设计估价函数,可以从“达成一个目标最少需要多少代价”来思考。
  那么A*可以应用于:
  1、深搜中的剪枝,譬如说当前的预估值已经大于边界那么不继续下去(IDA*)。
  2、广搜中优化取状态,用一个堆来存放队列里每个状态的估价函数值,每次取出最优的堆顶状态进行扩展(这点在k短路上可以直接体现出来)

【例题】Remmarguts’ Date(poj2449)
https://blog.csdn.net/CABI_ZGX/article/details/78936725

【例题】八数码
广搜框架:以空格为准心来进行广搜,用康托展开建立hash表来保存状态和判断重复。
A*优化:即使对于一个数字的每一步都是有效的也需要【当前位置】和【目标位置】的曼哈顿距离这么多步(也就是一路畅通无阻移动过去最少都需要这么多步),那么就以当前状态下所有数字和目标位置的曼哈顿距离的和作为估价函数即可。

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
#include<cmath>
using namespace std;
const int N=1000010;
struct node
{
    int now,a[9],posx;
    int g,h,f;//f=g+h
    bool operator<(const node x)const{
        return f>x.f;
    }
};
const int dx[]={
  0,0,1,-1};
const int dy[]={
  1,-1,0,0};
char ss[]={
  'r','l','d','u'};
const int fac[]={
  1,1,2,6,24,120,720,5040,40320};
int Hash(int a[])
{
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值