[BZOJ1237][SCOI2008]配对(贪心+dp)

传送门
题意:n 个整数A[i]和n个整数B[i]。把它们配对,要求所有配对的整数差的绝对值之和最小,不允许两个相同的数配对。(n<=100000)


首先排序两个数组。然后我们考虑一下简单的问题:如果两个相同的数允许配对的话,我们排完序之后每一位的一一对应配对就行了。但是现在不允许相同的数配对,那么我们就需要尽量交换相近的数使得我们交换所产生的代价尽量的小。但是如果相等的数很多会复杂度退化,怎么办呢?我们从少到多列一下交换的情况,先列一下2个(1个交叉)和3个(2个交叉)的
在这里插入图片描述
我们都假设极端情况:
(1)中设a=c, b=d 那么我们需要a连d,b连d
(2)(3)中设a=d,b=d,c=f,那么我们需要a连f,b连d,c连e(2情况)或者反过来(3情况),那么我们不论如何交换,都无法把(2)(3)中的两个交叉减少到(1)这样的一个交叉。
做到这一步我们是绝望的,但是不要灰心,我们继续往前列。
我们列一下4个(3个交叉)的情况,同样设上下相等,不抱希望的尝试交换减少交叉,但是!这样是可以减少交叉的!
在这里插入图片描述
我们只需要交换下面的g和h就可以减少一个交叉。那么兴奋地列一些大于2的交叉的情况,发现都可以通过类似的方法优化到2个交叉。那么也就是说:将两个数列排序后,每个位置与他配对的位置的距离不会超过2!

那么我们就可以根这个来dp。设F[i]表示现在匹配到i,所有配对的整数差的绝对值之和最小是多少。那么我们就能继承i-1,i-2,和i-3的状态,分别对应:上下直接匹配(我没列出来,直接相连没有交叉),(1)情况,(2)和(3)情况(注意都要考虑)。


#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=1e5+10;
const ll INF=1e13;
int a[N],b[N];
ll f[N];
ll get(int x,int y)
{
	if(a[x]==b[y]) return INF;
	else return abs(a[x]-b[y]);
}
int main()
{
	int n;scanf("%d",&n);
	for(int i=1;i<=n;i++)
	{
		scanf("%d%d",&a[i],&b[i]);
	}
	sort(a+1,a+n+1); sort(b+1,b+n+1);
	for(int i=1;i<=n;i++) f[i]=INF; f[0]=0;
	for(int i=1;i<=n;i++)
	{
		ll t=INF;
		if(i>=1) t=min(t,f[i-1]+get(i,i));
		if(i>=2) t=min(t,f[i-2]+get(i,i-1)+get(i-1,i));
		if(i>=3)
		{
			t=min(t,f[i-3]+get(i,i-2)+get(i-1,i)+get(i-2,i-1));
			t=min(t,f[i-3]+get(i,i-1)+get(i-1,i-2)+get(i-2,i));
		}
		f[i]=t;
	}
	printf("%lld\n",f[n]);
	return 0;
}	
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值