POJ 2289 Jamie's Contact Groups 二分图多重匹配

给定一个规模为n的名单,要将名单中的人归到m个组中,给出每个人可能的分组号,需要确定一种分配方案,是的最大规模的组最小


建图之后,算是一个匈牙利算法的改进,看着kuangbin的模板写的

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
const int M=2010;
int bmap[M][M];
bool bmask[M];
int nx,ny;
int vcy[M];
int cy[M][M];
int limit;
bool findpath(int u)
{
    int i,j;
    for(i=0;i<ny;i++)
    {
        if(bmap[u][i]&&!bmask[i])
        {
            bmask[i]=1;
            if(vcy[i]<limit)
            {
                cy[i][vcy[i]++]=u;
                return 1;
            }
            for(j=0;j<vcy[i];j++)
            {
                if(findpath(cy[i][j]))
                {
                    cy[i][j]=u;
                    return 1;
                }
            }
        }
    }
    return 0;
}
bool MulMatch()
{
    memset(vcy,0,sizeof(vcy));
    for(int i=0;i<nx;i++)
    {
        memset(bmask,0,sizeof(bmask));
        if(!findpath(i)) return 0;
    }
    return 1;
}
int main()
{
    char ch[2002];
    int _left,_right,v;
    while(scanf("%d%d",&nx,&ny)!=EOF)
    {
        getchar();
        if(nx==0&&ny==0) break;
        memset(bmap,0,sizeof(bmap));
        for(int i=0;i<nx;i++)
        {
            gets(ch);
            int len=strlen(ch);
            for(int j=0;j<len;j++)
            {
                if(ch[j]>='0'&&ch[j]<='9')
                {
                    v=0;
                    while(ch[j]>='0'&&ch[j]<='9')
                    {
                        v=v*10+ch[j++]-'0';
                    }
                    bmap[i][v]=1;
                }
            }
        }
        _left=0,_right=nx;
        while(_left<_right)
        {
            limit=(_left+_right)/2;
            if(MulMatch()) _right=limit;
            else _left=limit+1;
        }
        printf("%d\n",_right);
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值