opecv cuda加速官方教程1:GPU上的相似性检查(PSNR和SSIM)

Similarity check (PNSR and SSIM) on the GPU的简单翻译,原文地址

Global

在使用OpenCV和相似性度量的视频输入教程中,我已经介绍了PSNR和SSIM方法来检查两幅图像之间的相似性。如您所见,执行过程需要相当长的时间,特别是在SSIM的情况下。但是,如果CPU的OpenCV实现的性能数字不能让您满意,并且您的系统中碰巧有一个NVIDIA CUDA GPU设备,那么一切都不会丢失。您可以尝试为视频卡移植或编写owm算法。
本教程将很好地掌握如何使用OpenCV的GPU模块进行编码。作为先决条件,您应该已经知道如何处理core、highgui和imgproc模块。因此,我们的主要目标是:

  • 与CPU相比有什么不同?

  • 为PSNR和SSIM创建GPU代码

  • 优化代码以获得最佳性能

源码

您还可以在OpenCV源代码库的samples/cpp/tutorial\u code/gpu/gpu basics similarity/gpu basics similarity目录中找到源代码和视频文件,或者从这里下载。完整的源代码相当长(由于通过命令行参数和性能度量来控制应用程序)。因此,为了避免将这些部分与您将在这里找到的函数本身混淆。
PSNR返回一个浮点数,如果两个输入在30和50之间相似(越高越好)。

double getPSNR(const Mat& I1, const Mat& I2)
{
    Mat s1;
    absdiff(I1, I2, s1);       // |I1 - I2|
    s1.convertTo(s1, CV_32F);  // cannot make a square on 8 bits
    s1 = s1.mul(s1);           // |I1 - I2|^2
    Scalar s = sum(s1);         // sum elements per channel
    double sse = s.val[0] + s.val[1] + s.val[2]; // sum channels
    if( sse <= 1e-10) // for small values return zero
        return 0;
    else
    {
        double  mse =sse /(double)(I1.channels() * I1.total());
        double psnr = 10.0*log10((255*255)/mse);
        return psnr;
    }
}
double getPSNR_CUDA(const Mat& I1, const Mat& I2)
{
    cuda::GpuMat gI1, gI2, gs, t1,t2;
    gI1.upload(I1);
    gI2.upload(I2);
    gI1.convertTo(t1, CV_32F);
    gI2.convertTo(t2, CV_32F);
    cuda::absdiff(t1.reshape(1), t2.reshape(1), gs);
    cuda::multiply(gs, gs, gs);
    Scalar s = cuda::sum(gs);
    double sse = s.val[0] + s.val[1] + s.val[2];
    if( sse <= 1e-10) // for small values return zero
        return 0;
    else
    {
        double  mse =sse /(double)(gI1.channels() * I1.total());
        double psnr = 10.0*log10((255*255)/mse);
        return psnr;
    }
}
struct BufferPSNR                                     // Optimized CUDA versions
{   // Data allocations are very expensive on CUDA. Use a buffer to solve: allocate once reuse later.
    cuda::GpuMat gI1, gI2, gs, t1,t2;
    cuda::GpuMat buf;
};
double getPSNR_CUDA_optimized(const Mat& I1, const Mat& I2, BufferPSNR& b)
{
    b.gI1.upload(I1);
    b.gI2.upload(I2);
    b.gI1.convertTo(b.t1, CV_32F);
    b.gI2.convertTo(b.t2, CV_32F);
    cuda::absdiff(b.t1.reshape(1), b.t2.reshape(1), b.gs);
    cuda::multiply(b.gs, b.gs, b.gs);
    double sse = cuda::sum(b.gs, b.buf)[0];
    if( sse <= 1e-10) // for small values return zero
        return 0;
    else
    {
        double mse = sse /(double)(I1.channels() * I1.total());
        double psnr = 10.0*log10((255*255)/mse);
        return psnr;
    }
}

SSIM返回图像的MSSIM。这也是一个介于0和1之间的浮点数(越高越好),但是每个通道有一个浮点数。因此,我们返回一个标量OpenCV数据结构:

Scalar getMSSIM( const Mat& i1, const Mat& i2)
{
    const double C1 = 6.5025, C2 = 58.5225;
    /***************************** INITS **********************************/
    int d     = CV_32F;
    Mat I1, I2;
    i1.convertTo(I1, d);           // cannot calculate on one byte large values
    i2.convertTo(I2, d);
    Mat I2_2   = I2.mul(I2);        // I2^2
    Mat I1_2   = I1.mul(I1);        // I1^2
    Mat I1_I2  = I1.mul(I2);        // I1 * I2
    /*************************** END INITS **********************************/
    Mat mu1, mu2;   // PRELIMINARY COMPUTING
    GaussianBlur(I1, mu1, Size(11, 11), 1.5);
    GaussianBlur(I2, mu2, Size(11, 11), 1.5);
    Mat mu1_2   =   mu1.mul(mu1);
    Mat mu2_2   =   mu2.mul(mu2);
    Mat mu1_mu2 =   mu1.mul(mu2);
    Mat sigma1_2, sigma2_2, sigma12;
    GaussianBlur(I1_2, sigma1_2, Size(11, 11), 1.5);
    sigma1_2 -= mu1_2;
    GaussianBlur(I2_2, sigma2_2, Size(11, 11), 1.5);
    sigma2_2 -= mu2_2;
    GaussianBlur(I1_I2, sigma12, Size(11, 11), 1.5);
    sigma12 -= mu1_mu2;
    Mat t1, t2, t3;
    t1 = 2 * mu1_mu2 + C1;
    t2 = 2 * sigma12 + C2;
    t3 = t1.mul(t2);              // t3 = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))
    t1 = mu1_2 + mu2_2 + C1;
    t2 = sigma1_2 + sigma2_2 + C2;
    t1 = t1.mul(t2);               // t1 =((mu1_2 + mu2_2 + C1).*(sigma1_2 + sigma2_2 + C2))
    Mat ssim_map;
    divide(t3, t1, ssim_map);      // ssim_map =  t3./t1;
    Scalar mssim = mean( ssim_map ); // mssim = average of ssim map
    return mssim;
}
Scalar getMSSIM_CUDA( const Mat& i1, const Mat& i2)
{
    const float C1 = 6.5025f, C2 = 58.5225f;
    /***************************** INITS **********************************/
    cuda::GpuMat gI1, gI2, gs1, tmp1,tmp2;
    gI1.upload(i1);
    gI2.upload(i2);
    gI1.convertTo(tmp1, CV_MAKE_TYPE(CV_32F, gI1.channels()));
    gI2.convertTo(tmp2, CV_MAKE_TYPE(CV_32F, gI2.channels()));
    vector<cuda::GpuMat> vI1, vI2;
    cuda::split(tmp1, vI1);
    cuda::split(tmp2, vI2);
    Scalar mssim;
    Ptr<cuda::Filter> gauss = cuda::createGaussianFilter(vI2[0].type(), -1, Size(11, 11), 1.5);
    for( int i = 0; i < gI1.channels(); ++i )
    {
        cuda::GpuMat I2_2, I1_2, I1_I2;
        cuda::multiply(vI2[i], vI2[i], I2_2);        // I2^2
        cuda::multiply(vI1[i], vI1[i], I1_2);        // I1^2
        cuda::multiply(vI1[i], vI2[i], I1_I2);       // I1 * I2
        /*************************** END INITS **********************************/
        cuda::GpuMat mu1, mu2;   // PRELIMINARY COMPUTING
        gauss->apply(vI1[i], mu1);
        gauss->apply(vI2[i], mu2);
        cuda::GpuMat mu1_2, mu2_2, mu1_mu2;
        cuda::multiply(mu1, mu1, mu1_2);
        cuda::multiply(mu2, mu2, mu2_2);
        cuda::multiply(mu1, mu2, mu1_mu2);
        cuda::GpuMat sigma1_2, sigma2_2, sigma12;
        gauss->apply(I1_2, sigma1_2);
        cuda::subtract(sigma1_2, mu1_2, sigma1_2); // sigma1_2 -= mu1_2;
        gauss->apply(I2_2, sigma2_2);
        cuda::subtract(sigma2_2, mu2_2, sigma2_2); // sigma2_2 -= mu2_2;
        gauss->apply(I1_I2, sigma12);
        cuda::subtract(sigma12, mu1_mu2, sigma12); // sigma12 -= mu1_mu2;
        cuda::GpuMat t1, t2, t3;
        mu1_mu2.convertTo(t1, -1, 2, C1); // t1 = 2 * mu1_mu2 + C1;
        sigma12.convertTo(t2, -1, 2, C2); // t2 = 2 * sigma12 + C2;
        cuda::multiply(t1, t2, t3);        // t3 = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))
        cuda::addWeighted(mu1_2, 1.0, mu2_2, 1.0, C1, t1);       // t1 = mu1_2 + mu2_2 + C1;
        cuda::addWeighted(sigma1_2, 1.0, sigma2_2, 1.0, C2, t2); // t2 = sigma1_2 + sigma2_2 + C2;
        cuda::multiply(t1, t2, t1);                              // t1 =((mu1_2 + mu2_2 + C1).*(sigma1_2 + sigma2_2 + C2))
        cuda::GpuMat ssim_map;
        cuda::divide(t3, t1, ssim_map);      // ssim_map =  t3./t1;
        Scalar s = cuda::sum(ssim_map);
        mssim.val[i] = s.val[0] / (ssim_map.rows * ssim_map.cols);
    }
    return mssim;
}
struct BufferMSSIM                                     // Optimized CUDA versions
{   // Data allocations are very expensive on CUDA. Use a buffer to solve: allocate once reuse later.
    cuda::GpuMat gI1, gI2, gs, t1,t2;
    cuda::GpuMat I1_2, I2_2, I1_I2;
    vector<cuda::GpuMat> vI1, vI2;
    cuda::GpuMat mu1, mu2;
    cuda::GpuMat mu1_2, mu2_2, mu1_mu2;
    cuda::GpuMat sigma1_2, sigma2_2, sigma12;
    cuda::GpuMat t3;
    cuda::GpuMat ssim_map;
    cuda::GpuMat buf;
};
Scalar getMSSIM_CUDA_optimized( const Mat& i1, const Mat& i2, BufferMSSIM& b)
{
    const float C1 = 6.5025f, C2 = 58.5225f;
    /***************************** INITS **********************************/
    b.gI1.upload(i1);
    b.gI2.upload(i2);
    cuda::Stream stream;
    b.gI1.convertTo(b.t1, CV_32F, stream);
    b.gI2.convertTo(b.t2, CV_32F, stream);
    cuda::split(b.t1, b.vI1, stream);
    cuda::split(b.t2, b.vI2, stream);
    Scalar mssim;
    Ptr<cuda::Filter> gauss = cuda::createGaussianFilter(b.vI1[0].type(), -1, Size(11, 11), 1.5);
    for( int i = 0; i < b.gI1.channels(); ++i )
    {
        cuda::multiply(b.vI2[i], b.vI2[i], b.I2_2, 1, -1, stream);        // I2^2
        cuda::multiply(b.vI1[i], b.vI1[i], b.I1_2, 1, -1, stream);        // I1^2
        cuda::multiply(b.vI1[i], b.vI2[i], b.I1_I2, 1, -1, stream);       // I1 * I2
        gauss->apply(b.vI1[i], b.mu1, stream);
        gauss->apply(b.vI2[i], b.mu2, stream);
        cuda::multiply(b.mu1, b.mu1, b.mu1_2, 1, -1, stream);
        cuda::multiply(b.mu2, b.mu2, b.mu2_2, 1, -1, stream);
        cuda::multiply(b.mu1, b.mu2, b.mu1_mu2, 1, -1, stream);
        gauss->apply(b.I1_2, b.sigma1_2, stream);
        cuda::subtract(b.sigma1_2, b.mu1_2, b.sigma1_2, cuda::GpuMat(), -1, stream);
        //b.sigma1_2 -= b.mu1_2;  - This would result in an extra data transfer operation
        gauss->apply(b.I2_2, b.sigma2_2, stream);
        cuda::subtract(b.sigma2_2, b.mu2_2, b.sigma2_2, cuda::GpuMat(), -1, stream);
        //b.sigma2_2 -= b.mu2_2;
        gauss->apply(b.I1_I2, b.sigma12, stream);
        cuda::subtract(b.sigma12, b.mu1_mu2, b.sigma12, cuda::GpuMat(), -1, stream);
        //b.sigma12 -= b.mu1_mu2;
        //here too it would be an extra data transfer due to call of operator*(Scalar, Mat)
        cuda::multiply(b.mu1_mu2, 2, b.t1, 1, -1, stream); //b.t1 = 2 * b.mu1_mu2 + C1;
        cuda::add(b.t1, C1, b.t1, cuda::GpuMat(), -1, stream);
        cuda::multiply(b.sigma12, 2, b.t2, 1, -1, stream); //b.t2 = 2 * b.sigma12 + C2;
        cuda::add(b.t2, C2, b.t2, cuda::GpuMat(), -12, stream);
        cuda::multiply(b.t1, b.t2, b.t3, 1, -1, stream);     // t3 = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))
        cuda::add(b.mu1_2, b.mu2_2, b.t1, cuda::GpuMat(), -1, stream);
        cuda::add(b.t1, C1, b.t1, cuda::GpuMat(), -1, stream);
        cuda::add(b.sigma1_2, b.sigma2_2, b.t2, cuda::GpuMat(), -1, stream);
        cuda::add(b.t2, C2, b.t2, cuda::GpuMat(), -1, stream);
        cuda::multiply(b.t1, b.t2, b.t1, 1, -1, stream);     // t1 =((mu1_2 + mu2_2 + C1).*(sigma1_2 + sigma2_2 + C2))
        cuda::divide(b.t3, b.t1, b.ssim_map, 1, -1, stream);      // ssim_map =  t3./t1;
        stream.waitForCompletion();
        Scalar s = cuda::sum(b.ssim_map, b.buf);
        mssim.val[i] = s.val[0] / (b.ssim_map.rows * b.ssim_map.cols);
    }
    return mssim;
}

How to do it? -The GPU

如上所述,每个操作有三种类型的函数。一个用于CPU,两个用于GPU。我为GPU做了两个示例的原因是,通常简单地将CPU移植到GPU实际上会使它变慢。如果你想获得一些性能提升,你需要记住一些规则,稍后我将详细介绍这些规则。
GPU模块的开发是为了尽可能地与CPU模块相似。这使得移植过程更容易。在编写任何代码之前,您需要做的第一件事是将GPU模块链接到您的项目,并包含模块的头文件。GPU的所有函数和数据结构都位于cv命名空间的GPU子命名空间中。您可以通过use namespace关键字将其添加到默认名称空间中,或者通过cv::显式地将其标记到任意位置以避免混淆。我晚点再做。
#include <opencv2/gpu.hpp> // GPU structures and methods
GPU代表“图形处理单元”。它最初是用来渲染图形场景的。这些场景建立在大量数据的基础上。然而,这些并不是以顺序的方式相互依赖的,因为它们可能是并行处理的。因此,GPU将包含多个较小的处理单元。这些都不是最先进的处理器,在一对一的CPU测试,它会落后。然而,它的优势在于它的数量。在过去的几年里,越来越多的趋势是在非图形场景中获得GPU的这些大规模并行功能;渲染也一样。这就产生了图形处理单元(GPGPU)上的通用计算。
GPU有自己的内存。当您使用OpenCV将数据从硬盘读取到系统内存中的Mat对象时。CPU以某种方式(通过它的高速缓存)直接在上面工作,但是GPU不能。它必须将计算所需的信息从系统内存传输到自己的内存。这是通过上传过程完成的,非常耗时。最后,结果将不得不下载回您的系统内存,让您的CPU看到并使用它。不建议将小功能移植到GPU,因为上载/下载时间将大于并行执行所获得的时间。
Mat对象仅存储在系统内存(或CPU缓存)中。为了获得一个OpenCV矩阵到GPU,你需要使用它的GPU对应的cv::cuda::GpuMat。它的工作原理与Mat类似,只有2D限制,没有返回函数的引用(不能将GPU引用与CPU引用混合)。要将Mat对象上载到GPU,需要在创建类的实例后调用upload函数。要下载,可以使用Mat对象的简单赋值或使用下载功能。

Mat I1;         // Main memory item - read image into with imread for example
gpu::GpuMat gI; // GPU matrix - for now empty
gI1.upload(I1); // Upload a data from the system memory to the GPU memory
I1 = gI1;       // Download, gI1.download(I1) will work too

一旦你的数据在GPU内存中,你可以调用OpenCV的GPU功能。大多数函数的名称与CPU上的相同,不同之处在于它们只接受GpuMat输入。
另一件事要记住的是,不是所有的频道号码,你可以作出高效的算法在GPU上。一般来说,我发现GPU图像的输入图像需要是一个或四个通道的图像,并且元素大小需要是char或float类型。GPU上没有double支持,抱歉。为某些函数传递其他类型的对象将导致异常抛出,并在错误输出上显示错误消息。文档在大多数地方详细说明了输入所接受的类型。如果您有三个通道图像作为输入,您可以做两件事:要么添加一个新通道(并使用char元素),要么分割图像并为每个图像调用函数。第一个并不推荐,因为这会浪费内存。
对于某些函数,元素(相邻项)的位置无关紧要,快速的解决方法是将其重塑为单通道图像。这是PSNR实现的情况,其中对于absdiff方法,邻居的值并不重要。但是,对于GaussianBlur,这不是一个选项,因此需要对SSIM使用分割方法。有了这些知识,你可以制作一个可行的GPU代码(比如我的GPU代码)并运行它。您会惊讶地发现,它可能会比您的CPU实现慢。

Optimization

这样做的原因是你把内存分配和数据传输的价格抛到了窗外。在GPU上,这非常高。优化的另一种可能性是在cv::cuda:Stream的帮助下引入异步OpenCV GPU调用。

  1. GPU上的内存分配相当可观。因此,如果可能的话,尽可能少地分配新内存。如果创建一个要多次调用的函数,最好只在第一次调用期间为该函数分配一次本地参数。为此,需要创建一个包含所有要使用的局部变量的数据结构。例如,在峰值信噪比的情况下,这些是:
struct BufferPSNR                                     // Optimized GPU versions
  {   // Data allocations are very expensive on GPU. Use a buffer to solve: allocate once reuse later.
  gpu::GpuMat gI1, gI2, gs, t1,t2;
  gpu::GpuMat buf;
};

实例化程序如下:
BufferPSNR bufferPSNR;
最后,每次调用时都将其传递给函数:
double getPSNR_GPU_optimized(const Mat& I1, const Mat& I2, BufferPSNR& b)
现在可以访问这些本地参数:b.gI1、b.buf等等。只有当新的矩阵大小与前一个不同时,GpuMat才会在新的调用中重新分配自己。

  1. 避免不必要的函数数据传输。在GPU上,任何小的数据传输将是重要的。因此,如果可能的话,进行所有的计算(换言之,不要创建新的内存对象——原因在前面已经解释过了)。例如,虽然用单行公式表示算术运算可能更容易,但速度会慢一些。对于SSIM,我需要计算:
    b.t1 = 2 * b.mu1_mu2 + C1;
    尽管上面的调用将成功,但请注意存在隐藏的数据传输。在进行加法之前,它需要将乘法存储在某个地方。因此,它将在后台创建一个局部矩阵,将C1值加到该矩阵上,最后将其赋给t1。为了避免这种情况,我们使用gpu函数,而不是算术运算符:
gpu::multiply(b.mu1_mu2, 2, b.t1); //b.t1 = 2 * b.mu1_mu2 + C1;
gpu::add(b.t1, C1, b.t1);
  1. 使用异步调用(cv::cuda::Stream)。默认情况下,无论何时调用GPU函数,它都会等待调用完成,然后返回结果。但是,可以进行异步调用,这意味着它将调用操作执行,为算法分配昂贵的数据并立即返回。如果愿意,现在可以调用另一个函数。对于MSSIM,这是一个小的优化点。在我们的默认实现中,我们将图像分割成多个通道,并为每个通道调用它们来实现GPU功能。流的并行化程度很小。通过使用流,我们可以在GPU已经执行给定方法的情况下进行数据分配、上传操作。例如,我们需要上传两张图片。我们把这些一个接一个地排队,并调用处理它的函数。这些函数将等待上载完成,但是在这种情况下,它会为下一个要执行的函数分配输出缓冲区。
gpu::Stream stream;
stream.enqueueConvert(b.gI1, b.t1, CV_32F);    // Upload
gpu::split(b.t1, b.vI1, stream);              // Methods (pass the stream as final parameter).
gpu::multiply(b.vI1[i], b.vI1[i], b.I1_2, stream);        // I1^2

Result and conclusion

在Intel P8700笔记本电脑CPU与低端NVIDIA GT220M的搭配上,以下是性能数据:

Time of PSNR CPU (averaged for 10 runs): 41.4122 milliseconds. With result of: 19.2506
Time of PSNR GPU (averaged for 10 runs): 158.977 milliseconds. With result of: 19.2506
Initial call GPU optimized:              31.3418 milliseconds. With result of: 19.2506
Time of PSNR GPU OPTIMIZED ( / 10 runs): 24.8171 milliseconds. With result of: 19.2506
Time of MSSIM CPU (averaged for 10 runs): 484.343 milliseconds. With result of B0.890964 G0.903845 R0.936934
Time of MSSIM GPU (averaged for 10 runs): 745.105 milliseconds. With result of B0.89922 G0.909051 R0.968223
Time of MSSIM GPU Initial Call            357.746 milliseconds. With result of B0.890964 G0.903845 R0.936934
Time of MSSIM GPU OPTIMIZED ( / 10 runs): 203.091 milliseconds. With result of B0.890964 G0.903845 R0.936934

在这两种情况下,与CPU实现相比,我们的性能几乎提高了100%。它可能只是应用程序工作所需的改进。你可以在YouTube上看到一个运行时实例。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值