图像质量评估指标——PSNR介绍及计算方法

图像质量评估指标——PSNR介绍及计算方法

  PSNR全称为Peak Signal to Noise Ratio,即峰值信噪比,是一种评价图像的客观标准,经常用于计算两幅图像的可视化误差,如衡量原图与经过压缩后图像之间的可视化差异、生成网络生成的图像与真实图像之间的差异等等。

计算方法

  假设处理后图像为 I I I、真实图像为 K K K,则峰值噪声比定义为:
P S N R = 10 ⋅ log ⁡ 10 ( M A X 2 M S E ) = 20 ⋅ log ⁡ 10 ( M A X M S E ) PSNR=10·\log_{10}(\frac{MAX^2}{MSE})=20·\log_{10}(\frac{MAX}{\sqrt{MSE}}) PSNR=10log10(MSEMAX2)=20log10(MSE MAX)
其中, M A X MAX MAX表示图像上像素点的最大数值,常定义为 1 1 1或者 255 255 255 M S E MSE MSE定义为:
M S E = 1 m n ∑ i = 0 m − 1 ∑ j = 0 n − 1 ∣ ∣ I ( i , j ) − K ( i , j ) ∣ ∣ 2 MSE=\frac{1}{mn}\sum^{m-1}_{i=0}\sum^{n-1}_{j=0}||I(i,j)-K(i,j)||^2 MSE=mn1i=0m1j=0n1∣∣I(i,j)K(i,j)2

代码实现

# 这里以生成网络中测试模型性能为例,所以pred与gt均是tensor格式
# 并且在模型训练过程中,图像数据均被归一化至0到1之间,因此max默认1.0
def psnr(pred, gt, max=1.0):
    # 需要先切断梯度,将数据转为numpy格式进行计算
    pred = pred.clamp(0, max).cpu().detach().numpy()
    gt = gt.clamp(0, max).cpu().detach().numpy()
    # 两个图像数值做差,之后求根下MSE
    imdff = pred - gt
    rmse = math.sqrt(np.mean(imdff ** 2))
    # 如果像素完全相同,即rmse为0,则PSNR直接返回100,防止后续计算log时报错
    if rmse == 0:
        return 100
    # 按公式计算
    return 20 * math.log10(max / rmse)

直接调用skimage库中的函数

from skimage.metrics import peak_signal_noise_ratio


# 这里data_range表示图像像素的最大值,即公式中的MAX
# 如果不传入data_range,则程序默认选择image_true中最大的像素值
# 或者最大值减最小值(如果像素点存在负数情况),具体可见源码
psnr = peak_signal_noise_ratio(image_true, image_test, data_range=None)

skimage中计算PSNR的源码

def peak_signal_noise_ratio(image_true, image_test, *, data_range=None):
    """
    Compute the peak signal to noise ratio (PSNR) for an image.

    Parameters
    ----------
    image_true : ndarray
        Ground-truth image, same shape as im_test.
    image_test : ndarray
        Test image.
    data_range : int, optional
        The data range of the input image (distance between minimum and
        maximum possible values).  By default, this is estimated from the image
        data-type.

    Returns
    -------
    psnr : float
        The PSNR metric.

    Notes
    -----
    .. versionchanged:: 0.16
        This function was renamed from ``skimage.measure.compare_psnr`` to
        ``skimage.metrics.peak_signal_noise_ratio``.

    References
    ----------
    .. [1] https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio

    """
    check_shape_equality(image_true, image_test)
	# 如果不指定data_range的话,则默认取image_true中的最大值,或者最大值减最小值
    if data_range is None:
        if image_true.dtype != image_test.dtype:
            warn("Inputs have mismatched dtype.  Setting data_range based on "
                 "image_true.")
        dmin, dmax = dtype_range[image_true.dtype.type]
        true_min, true_max = np.min(image_true), np.max(image_true)
        if true_max > dmax or true_min < dmin:
            raise ValueError(
                "image_true has intensity values outside the range expected "
                "for its data type. Please manually specify the data_range.")
        if true_min >= 0:
            # most common case (255 for uint8, 1 for float)
            data_range = dmax
        else:
            data_range = dmax - dmin
	# 将数据转变为float类型
    image_true, image_test = _as_floats(image_true, image_test)
	# 计算MSE
    err = mean_squared_error(image_true, image_test)
    # 进一步计算PSNR
    return 10 * np.log10((data_range ** 2) / err)

以上仅是笔者个人见解,若有问题,欢迎指正。

### 关于面包板电源模块 MB102 的 USB 供电规格及兼容性 #### 1. **MB102 基本功能** 面包板电源模块 MB102 是一种常见的实验工具,主要用于为基于面包板的小型电子项目提供稳定的电压输出。它通常具有两路独立的稳压输出:一路为 5V 和另一路可调电压(一般范围为 3V 至 12V)。这种设计使得它可以满足多种芯片和传感器的不同工作电压需求。 #### 2. **USB 供电方式** MB102 支持通过 USB 接口供电,输入电压通常是标准的 5V DC[^1]。由于其内部集成了 LM7805 稳压器以及可调节电位器控制的直流-直流变换电路,因此即使输入来自电脑或其他低功率 USB 设备,也能稳定地向负载供应电力。不过需要注意的是,如果项目的功耗较高,则可能超出某些 USB 端口的最大电流能力(一般是 500mA),从而引起不稳定现象或者保护机制启动断开连接的情况发生。 #### 3. **兼容性分析** 该型号广泛适用于各种微控制器单元 (MCU),特别是那些像 Wemos D1 R32 这样可以通过杜邦线轻松接入并共享相同逻辑级别的系统[^2]。另外,在提到 Arduino Uno 板时也表明了良好的互操作性,因为两者均采用相似的标准接口定义与电气特性参数设置[^4]: - 对于需要 3.3V 工作环境下的组件来说,只需调整好对应跳线帽位置即可实现精准匹配; - 当涉及到更多外围扩展应用场合下,例如带有多重模拟信号采集任务的情形里,利用 MB102 提供干净无干扰的基础能源供给就显得尤为重要了[^3]。 综上所述,对于打算构建以单片机为核心的原型验证平台而言,选用具备良好声誉记录且易于获取配件支持服务链路上下游资源丰富的品牌产品——如这里讨论过的这款特定类型的配电装置不失为明智之举之一。 ```python # 示例 Python 代码展示如何检测硬件状态 import machine pin = machine.Pin(2, machine.Pin.IN) if pin.value() == 1: print("Power supply is stable.") else: print("Check your connections and power source.") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

视觉萌新、

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值