Pandas 十六:怎样实现groupby分组统计
类似SQL:
select city,max(temperature) from city_weather group by city;
groupby:先对数据分组,然后在每个分组上应用聚合函数、转换函数
本次演示:
一、分组使用聚合函数做数据统计
二、遍历groupby的结果理解执行流程
三、实例分组探索天气数据
1
import pandas as pd
import numpy as np
# 加上这一句,能在jupyter notebook展示matplot图表
%matplotlib inline
2
df = pd.DataFrame({'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'],
'B': ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'],
'C': np.random.randn(8),
'D': np.random.randn(8)})
df
2
A B C D
0 foo one 0.542903 0.788896
1 bar one -0.375789 -0.345869
2 foo two -0.903407 0.428031
3 bar three -1.564748 0.081163
4 foo two -1.093602 0.837348
5 bar two -0.202403 0.701301
6 foo one -0.665189 -1.505290
7 foo three -0.498339 0.534438
一、分组使用聚合函数做数据统计
1、单个列groupby,查询所有数据列的统计
3
df.groupby('A').sum()
3
C D
A
bar -2.142940 0.436595
foo -2.617633 1.083423
我们看到:
1.groupby中的’A’变成了数据的索引列
2.因为要统计sum,但B列不是数字,所以被自动忽略掉
2、多个列groupby,查询所有数据列的统计
4
df.groupby(['A','B']).mean()
4
C D
A B
bar one -0.375789 -0.345869
three -1.564748 0.081163
two -0.202403 0.701301
foo one -0.061143 -0.358197
three -0.498339 0.534438
two -0.998504 0.632690
我们看到:(‘A’,‘B’)成对变成了二级索引
5
df.groupby(['A','B'], as_index=False).mean()
5
A B C D
0 bar one -0.375789 -0.345869
1 bar three -1.564748 0.081163
2 bar two -0.202403 0.701301
3 foo one -0.061143 -0.358197
4 foo three -0.498339 0.534438
5 foo two -0.998504 0.632690
3、同时查看多种数据统计
6
df.groupby('A').agg([np.sum, np.mean, np.std])
6
我们看到:列变成了多级索引
4、查看单列的结果数据统计
7
# 方法1:预过滤,性能更好
df.groupby('A')['C'].agg([np.sum, np.mean, np.std])
7
sum mean std
A
bar -2.142940 -0.714313 0.741583
foo -2.617633 -0.523527 0.637822
8
# 方法2
df.groupby('A').agg([np.sum, np.mean, np.std])['C']
8
sum mean std
A
bar -2.142940 -0.714313 0.741583
foo -2.617633 -0.523527 0.637822
5、不同列使用不同的聚合函数
9
df.groupby('A').agg({"C":np.sum, "D":np.mean})
9
C D
A
bar -2.142940 0.145532
foo -2.617633 0.216685
二、遍历groupby的结果理解执行流程
for循环可以直接遍历每个group
1、遍历单个列聚合的分组
10
g = df.groupby('A')
g
10
<pandas.core.groupby.generic.DataFrameGroupBy object at 0x00000123B250E548>
11
for name,group in g:
print(name)
print(group)
print()
bar
A B C D
1 bar one -0.375789 -0.345869
3 bar three -1.564748 0.081163
5 bar two -0.202403 0.701301
foo
A B C D
0 foo one 0.542903 0.788896
2 foo two -0.903407 0.428031
4 foo two -1.093602 0.837348
6 foo one -0.665189 -1.505290
7 foo three -0.498339 0.534438
可以获取单个分组的数据
12
g.get_group('bar')
12
A B C D
1 bar one -0.375789 -0.345869
3 bar three -1.564748 0.081163
5 bar two -0.202403 0.701301
2、遍历多个列聚合的分组
13
g = df.groupby(['A', 'B'])
14
for name,group in g:
print(name)
print(group)
print()
可以看到,name是一个2个元素的tuple,代表不同的列
15
g.get_group(('foo', 'one'))
15
A B C D
0 foo one 0.542903 0.788896
6 foo one -0.665189 -1.505290
可以直接查询group后的某几列,生成Series或者子DataFrame
16
g['C']
16
<pandas.core.groupby.generic.SeriesGroupBy object at 0x00000123C33F64C8>
17
for name, group in g['C']:
print(name)
print(group)
print(type(group))
print()
其实所有的聚合统计,都是在dataframe和series上进行的;
三、实例分组探索天气数据
18
fpath = "./datas/beijing_tianqi/beijing_tianqi_2018.csv"
df = pd.read_csv(fpath)
# 替换掉温度的后缀℃
df.loc[:, "bWendu"] = df["bWendu"].str.replace("℃", "").astype('int32')
df.loc[:, "yWendu"] = df["yWendu"].str.replace("℃", "").astype('int32')
df.head()
18
ymd bWendu yWendu tianqi fengxiang fengli aqi aqiInfo aqiLevel
0 2018-01-01 3 -6 晴~多云 东北风 1-2级 59 良 2
1 2018-01-02 2 -5 阴~多云 东北风 1-2级 49 优 1
2 2018-01-03 2 -5 多云 北风 1-2级 28 优 1
3 2018-01-04 0 -8 阴 东北风 1-2级 28 优 1
4 2018-01-05 3 -6 多云~晴 西北风 1-2级 50 优 1
19
# 新增一列为月份
df['month'] = df['ymd'].str[:7]
df.head()
19
ymd bWendu yWendu tianqi fengxiang fengli aqi aqiInfo aqiLevel month
0 2018-01-01 3 -6 晴~多云 东北风 1-2级 59 良 2 2018-01
1 2018-01-02 2 -5 阴~多云 东北风 1-2级 49 优 1 2018-01
2 2018-01-03 2 -5 多云 北风 1-2级 28 优 1 2018-01
3 2018-01-04 0 -8 阴 东北风 1-2级 28 优 1 2018-01
4 2018-01-05 3 -6 多云~晴 西北风 1-2级 50 优 1 2018-01
1、查看每个月的最高温度
20
data = df.groupby('month')['bWendu'].max()
data
20
month
2018-01 7
2018-02 12
2018-03 27
2018-04 30
2018-05 35
2018-06 38
2018-07 37
2018-08 36
2018-09 31
2018-10 25
2018-11 18
2018-12 10
Name: bWendu, dtype: int32
21
type(data)
21
pandas.core.series.Series
22
data.plot()
22
<matplotlib.axes._subplots.AxesSubplot at 0x123c344b308>
2、查看每个月的最高温度、最低温度、平均空气质量指数
23
df.head()
23
ymd bWendu yWendu tianqi fengxiang fengli aqi aqiInfo aqiLevel month
0 2018-01-01 3 -6 晴~多云 东北风 1-2级 59 良 2 2018-01
1 2018-01-02 2 -5 阴~多云 东北风 1-2级 49 优 1 2018-01
2 2018-01-03 2 -5 多云 北风 1-2级 28 优 1 2018-01
3 2018-01-04 0 -8 阴 东北风 1-2级 28 优 1 2018-01
4 2018-01-05 3 -6 多云~晴 西北风 1-2级 50 优 1 2018-01
24
group_data = df.groupby('month').agg({"bWendu":np.max, "yWendu":np.min, "aqi":np.mean})
group_data
24
bWendu yWendu aqi
month
2018-01 7 -12 60.677419
2018-02 12 -10 78.857143
2018-03 27 -4 130.322581
2018-04 30 1 102.866667
2018-05 35 10 99.064516
2018-06 38 17 82.300000
2018-07 37 22 72.677419
2018-08 36 20 59.516129
2018-09 31 11 50.433333
2018-10 25 1 67.096774
2018-11 18 -4 105.100000
2018-12 10 -12 77.354839
25
group_data.plot()
25
<matplotlib.axes._subplots.AxesSubplot at 0x123c5502d48>