1.功率谱
(1)经典方法:
先根据时间历程函数x(t),算出它的相关函数φxx(τ),再对相关函数作傅立叶变
换,得到功率谱:Φxx(w);
(2)现代方法:
就是直接对原始数据 x(t) 作FFT,得到傅立叶谱:X(jf) 之后再计算:|X(jw)|²/T
就得到功率谱: Φxx(w) = |X(jw)|²/T
2.倒谱
对于功率谱P(k)我们对其进行IDFT也就是逆离散傅里叶变换,可以得到自相关序列。
我们假设自相关序列为A(n):
IDFT(P(k))→A(n)IDFT(P(k))→A(n)
什么是倒谱呢?
我们在求取自相关序列之前,对功率谱P(k)进行取对数,再求取对数功率谱的自相关序列。
IDFT(log(P(k)))→C(n)IDFT(log(P(k)))→C(n)
这样我们就得到了倒谱。