递归
递归就是方法自己调用自己,每次调用传入的参数不同。
- 递归方法必须向退出递归的条件逼近,否则就死循环了。
1、迷宫回溯问题
思路:
- 二维数组map表示迷宫8 * 7
- 开始位置(1, 1),目标位置(6, 5)
- 当map[i][j]为:
- 0 表示没走过
- 1 表示墙,走不了
- 2 表示可以走通
- 3 表示已经走过,但是走不通
- 在走迷宫时,确定一个策略: 下 -> 右 -> 上 -> 左
- 若当前位置走不通,回溯
package msp.cai.recursion;
/*
* 迷宫回溯问题
*/
public class RecursionTest01 {
public static void main(String[] args) {
// 定义地图并初始化
int[][] map = new int[8][7];
for (int i = 0; i < 7; i++) {
map[0][i] = 1;
map[7][i] = 1;
}
for (int i = 0; i < 8; i++) {
map[i][0] = 1;
map[i][6] = 1;
}
map[3][1] = 1;
map[3][4] = 1;
map[4][2] = 1;
map[4][3] = 1;
// 打印迷宫
for (int i = 0; i < 8; i++) {
for (int j = 0; j < 7; j++) {
System.out.print(map[i][j] + " ");
}
System.out.println();
}
findPath(map, 1, 1);
System.out.println("标记后的地图:");
for (int i = 0; i < 8; i++) {
for (int j = 0; j < 7; j++) {
System.out.print(map[i][j] + " ");
}
System.out.println();
}
}
/**
* @param map 地图
* @param i 开始的行
* @param j 开始的列
* @return null
*/
public static boolean findPath(int[][] map, int i, int j) {
// 已经找到目的地
if (map[6][5] == 2) {
return true;
}
// 还没找到
else {
// 若还没走过,0
if (map[i][j] == 0) {
map[i][j] = 2; // 假定该位置可以走通
if (findPath(map, i+1, j)) return true; // 向下
else if (findPath(map, i, j+1)) return true; // 向右
else if (findPath(map, i-1, j)) return true; // 向上
else if (findPath(map, i, j-1)) return true; // 向左
else {
map[i][j] = 3;
return false;
}
}
// 已经走过了, 可能是 1,2,3
else return false;
}
}
}
2、八皇后问题
该问题由国际西洋棋手马克思 贝瑟尔于1848年提出:
在8*8格的棋盘上放8个皇后,要求任意两个皇后不能处于同一行、同一列和同一斜线。
求共有多少种摆法。
思路:
- 第一个皇后放到第一行,第一列;
- 第二个皇后放到第二行,第一列,判断是否满足,若不则放到第2、3…列,找到一个合适的;
- 继续放第3、4…个皇后,直到第8个也能放到一个不冲突的位置,即找到了一种正确摆法;
- 当得到一个正确解时,开始回溯,得到第一个皇后放第一列的所有解;
- 然后将第一个皇后放到第一行的第2、3…8列,继续执行步骤2,3,4。
package msp.cai.recursion;
/*
* 8皇后问题
*/
public class RecursionTest02 {
final int max = 8; // 8个皇后
int[] arr = new int[max]; // 保存皇后的摆放位置,具体的值为每个皇后在该行中列的位置
static int count = 0;
// 打印摆放位置
private void print() {
// 只有 成功找到一种摆法后 才打印
count++;
for (int i = 0; i < arr.length; i++) {
System.out.print(arr[i] + " ");
}
System.out.println();
}
// 检测 当前位置的皇后n 与 之前的n-1个 是否冲突
private boolean check(int n) {
for (int i = 0; i < n; i++) {
// 若在同一行 或 在同一斜线,表示冲突了
// 不需要判断是否在同一行了
if (arr[i] == arr[n] || Math.abs(n - i) == Math.abs(arr[n] - arr[i]))
return false;
}
return true;
}
// 摆放皇后
private void put(int n) {
if (n == max) { // 8个都放完了
print();
return;
}
for (int i = 0; i < 8; i++) {
arr[n] = i; // 先将该皇后放到第i列
if (check(n)) {
put(n + 1); // 若不冲突,放下一个皇后
}
// 若冲突了,将i++,重新判断
}
}
public static void main(String[] args) {
RecursionTest02 queen8 = new RecursionTest02();
queen8.put(0);
System.out.printf("8个皇后总共%d种摆法", count);
}
}