Pytorch加载模型时的常见问题

当使用Pytorch加载模型时出现'Unexpected keys in state_dict'错误,通常是因为模型结构不匹配、GPU与CPU环境差异或DataParallel处理。解决方法包括检查模型参数一致性,加载时指定map_location为'cpu',以及对于DataParallel模型,加载state_dict内的'state_dict'子项。确保在加载和训练时模型环境的一致性。
摘要由CSDN通过智能技术生成

Pytorch加载模型报错 RuntimeError: Error(s) in loading state_dict for xxx: Unexpected key(s) in state_dict: xxx

问题描述:

RuntimeError: Error(s) in loading state_dict for xxx:  
Unexpected key(s) in state_dict: xxx

可能原因:

  1. 加载模型时的网络与训练时的不一致(较常见)
  2. 训练使用GPU,而测试时用的CPU
  3. 在模型训练时使用了 model = torch.nn.DataParallel(model) 并行训练

问题解决:

情况一:

这种情况没啥好说的,自己仔细检查检查,看看网络参数是否一致。

情况二:

# 加载模型时加上参数map_location='cpu'即可
# 如:

# 创建模型
model = TAANet_base(enc_dim=256, feature_dim=64, hidden_dim=128, layer=8, segment_size=200)
# 加载训练好的参数
model_state = torch.load('saves/temp/temp_best.pth.tar', map_location='cpu')
model.load_state_dict(model_state)

情况三:

# 创建模型
model = TAANet_base(enc_dim=256, feature_dim=64, hidden_dim=128, layer=8, segment_size=200)

model = torch.nn.DataParallel(model)

# 加载训练好的参数
model_state = torch.load('saves/temp/temp_best.pth.tar')
model.load_state_dict(model_state['state_dict'])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值