大坡3D软件开发

因我而不同--用软件来改变世界

排序:
默认
按更新时间
按访问量

什么是光栅显示

光栅由大量等宽等间距的平行狭缝构成的光学器件称为光栅(grating)。一般常用的光栅是在玻璃片上刻出大量平行刻痕制成,刻痕为不透光部分,两刻痕之间的光滑部分可以透光,相当于一狭缝。精制的光栅,在1cm宽度内刻有几千条乃至上万条刻痕。这种利用透射光衍射的光栅称为透射光栅,还有利用两刻痕间的反射光衍...

2017-02-21 18:27:57

阅读数:1259

评论数:0

计算机输出设备

输出设备(Output Device)是计算机硬件系统的终端设备,用于接收计算机数据的输出显示、打印、声音、控制外围设备操作等。也是把各种计算结果数据或信息以数字、字符、图像、声音等形式表现出来。常见的输出设备有显示器、打印机、绘图仪、影像输出系统、语音输出系统、磁记录设备等。Definition...

2017-02-20 14:22:17

阅读数:716

评论数:0

计算机图形学的主要研究内容是什么?

计算机图形学(Computer Graphics,简称CG)是一种使用数学算法将二维或三维图形转化为计算机显示器的栅格形式的科学。 简单地说,计算机图形学的主要研究内容就是研究如何在计算机中表示图形、以及利用计算机进行图形的计算、处理和显示的相关原理与算法。图形通常由点、线、面、体等几何元素和灰度...

2017-02-19 16:12:55

阅读数:1214

评论数:0

计算机视觉,计算机图形学和数字图像处理

计算机视觉是一门研究如何使机器“看”的科学,更进一步的说,就是是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,使电脑处理成为更适合人眼观察或传送给仪器检测的图像。作为一个科学学科,计算机视觉研究相关的理论和技术,试图建立能够从图像或者多维数据中获取‘信息’的人工...

2017-02-19 15:46:00

阅读数:1323

评论数:0

mt19937是什么鬼?

今天看一个C++的例子,突然看到这个mt19937,起先还以为是什么地方搞错了,怎么会有这个怪的名称呢?这个名称是mt1937? 代表1937年?心里一开始有这个疑问。代码如下:std::random_device rd; std::mt19937 gen(rd()); std::unif...

2017-02-18 16:20:14

阅读数:8197

评论数:0

D3D中四元数的表示

1、定义。DIRECTX9文档中定义,令q为一四元数,theta为绕轴axis旋转的角度,则:q.x = sin(theta/2) * axis.xq.y = sin(theta/2) * axis.yq.z = sin(theta/2) * axis.zq.w = cos(theta/2)可以简...

2017-02-17 14:33:36

阅读数:1072

评论数:0

为什么要使用四元数

为 了回答这个问题,先来看看一般关于旋转(面向)的描述方法-欧拉描述法。它使用最简单的x,y,z值来分别表示在x,y,z轴上的旋转角度,其取值为 0-360(或者0-2pi),一般使用roll,pitch,yaw来表示这些分量的旋转值。需要注意的是,这里的旋转是针对世界坐标系说的,这意味着 第一次...

2017-02-17 11:36:07

阅读数:1430

评论数:1

欧拉角的万向节锁

Gimbal LockWhat's Gimbal Lock?Gimbal lock is the phenomenon of two rotational axis of an object pointing in the same direction. Actually, if two axis...

2017-02-16 18:07:14

阅读数:735

评论数:0

什么是欧拉角?

什么是欧拉角?用一句话说,欧拉角就是物体绕坐标系三个坐标轴(x,y,z轴)的旋转角度。在这里,坐标系可以是世界坐标系,也可以是物体坐标系,旋转顺序也是任意的,可以是xyz,xzy,yxz,zxy,yzx,zyx中的任何一种,甚至可以是xyx,xyy,xzz,zxz等等等等。。。。。。所以说欧拉角多...

2017-02-16 15:58:52

阅读数:5315

评论数:0

牛顿迭代公式

牛顿迭代法(Newton's method)又称为牛顿-拉夫逊方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。方法使用函数f(x)的泰...

2017-02-16 14:21:02

阅读数:939

评论数:0

矩阵的特征值和特征向量

特征值是线性代数中的一个重要概念。在数学、物理学、化学、计算机等领域有着广泛的应用。设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值(characteristic value)或本征值(eigenvalue)。非零n维列向量x称为矩阵A的属于...

2017-02-14 11:07:37

阅读数:1249

评论数:0

点的变换和法向量的变换

在三维空间里,点的变换是通过仿射变换的,所以使用齐次坐标的变换矩阵来变换。不过,当一个点作矩阵M变换时,这个点的法向量是否也可以使用矩阵M来变换呢?答案是不行,只是在特殊的情况是可以,比如没有变形的变换。如果有变形的变换,就需要使用特殊矩阵:M矩阵的逆的转置矩阵。具体的推导过程,可以参考下面的文章...

2017-02-13 17:52:51

阅读数:1054

评论数:0

线性变换和仿射变换

1. 线性变换设v、w是两个线性空间.一个v至w的线性映射T,就称为v至w的线性变换.线性变换必须满足任意的x,y∈v 及任意实数a,b,有 T(ax+by)=aT(x)+bT(y)如恒等变换 I .v→v,对任意的x∈v,有 I(x)=x因为 I(ax+by)=ax+by= a I(x)+b I...

2017-02-13 15:59:59

阅读数:2083

评论数:0

矩阵的逆

设A是数域上的一个n阶方阵,若在相同数域上存在另一个n阶矩阵B,使得: AB=BA=E。 则我们称B是A的逆矩阵,而A则被称为可逆矩阵。E为n阶单位矩阵。求逆矩阵的方法:1. 高斯消元法2. 克莱姆法则克莱姆法则,又译克拉默法则(Cramer's Rule)是线性代数中一个关于求解线性方程组的定理...

2017-02-13 15:31:58

阅读数:1381

评论数:0

矩阵的转置

设A为m×n阶矩阵(即m行n列),第i 行j 列的元素是a(i,j),即:A=a(i,j)定义A的转置为这样一个n×m阶矩阵B,满足B=a(j,i),即 b (i,j)=a (j,i)(B的第i行第j列元素是A的第j行第i列元素),记A'=B。(有些书记为AT=B,这里T为A的上标)直观来看,将A...

2017-02-13 14:05:46

阅读数:1058

评论数:0

方形矩阵的行列式

行列式在数学中,是一个函数,其定义域为det的矩阵A,取值为一个标量,写作det(A)或 | A | 。行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在 n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学...

2017-02-12 15:09:11

阅读数:1365

评论数:0

矩阵的乘法

小明今天要做饭,消耗2斤肉,1斤蔬菜。肉每斤20元,蔬菜每斤5元,则一共需多少花费?这个问题的答案很简单:<img src="https://pic1.zhimg.com/0443f0bc0fdafcdb8ae96a032b146a64_b.jpg&...

2017-02-12 14:14:00

阅读数:1554

评论数:0

矩阵的定义

在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合[1]  ,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。[2]  在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计...

2017-02-09 13:47:21

阅读数:1072

评论数:0

为什么要使用矩阵

我们不妨回忆一下,矩阵是怎么产生的。矩阵可以看成是一个个向量的有序组合,这说明矩阵可以类比向量;但是向量又是怎么产生的?向量则是一个个数字的有序组合,这又把我们的研究方向指向了“数字是什么”这个问题上。比如,数字1是什么?它可以代表1米,可以代表1千克,也可以代表1分钟、1摄氏度甚至1个苹果。它为...

2017-02-09 13:34:36

阅读数:1583

评论数:0

正交基

规范正交基是n维欧式空间V中n个两两正交的非零单位向量组成的一个规范正交组。V中的任意向量ξ都可以由V的一组规范正交基{a1,a2,…,an}唯一表示ξ=x11+x22+…+xnn,x1,x2,…,xn是ξ关于基{a1,a2,…,an}的坐标,由于{a1,a2,…,an}是规范正交基,在欧式空间中...

2017-02-06 16:03:45

阅读数:2540

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭