一.贪心算法
在对问题求解时,总是作出在当前看来是最好的选择。也就是说,不从整体上加以考虑,它所作出的仅仅是在某种意义上的局部最优解(是否是全局最优,需要证明)。
二.最优装载问题
1.问题描述
有一天海盗们截获了一艘装满各种各样古董的货船,每一件都价值连城,一旦打碎就是去了价值,
海盗船载重量为C,每件固定的重量为wi,海盗们该如何尽可能装载最多数量的古董呢?
2.算法设计
3.代码实现
antique = [4, 10, 7, 11, 3, 5, 14, 2]
def max_ans(antique):
antique_sort = sorted(antique)
ans, tmp = 0, 0
ship = []
for item in antique_sort:
tmp += item
if tmp <= 30:
ans += 1
ship.append(item)
print('装载古董数量:', ans)
print('装载的古董:', ship)
max_ans(antique)
二.教室调度问题
1.问题描述
2.算法设计
你希望在这间教室上尽可能多的课。如何选出尽可能多且时间不冲突的课程呢?
具体做法如下:
(1) 选出结束最早的课,它就是要在这间教室上的第一堂课。
(2) 接下来,必须选择第一堂课结束后才开始的课。同样,你选择结束最早的课,这将是要在这间教室上的第二堂课。
重复这样做就能找出答案!
贪婪算法很简单:每步都采取最优的做法。在这个示例中,你每次都选择结束最早的课。用专业术语说,就是你每步都选择局部最优解,最终得到的就是全局最优解。
三.背包问题
1.问题描述
2.算法设计
1.计算出每件宝物的性价比,按照从高到低排序;
2.根据贪心策略,按性价比从大到小选取宝物,直到达到毛驴的运载能力。每次选择宝物后判断是否
小于m,如果不小于则取走宝物的一部分,程序结束。
3.代码实现
datas = [[4, 3], [3, 8], [9, 18], [11, 30], [5, 8],
[3, 6], [4, 13], [3, 9]]
m = 30
w = 0
for i in range(len(datas)):
price = datas[i][1] / datas[i][0]
datas[i].append(price)
datas.sort(key=lambda data: data[2], reverse=True)
for data in datas:
if data[0] <= m:
w += data[1]
m -= data[0]
else:
w += data[2]*m
break
print('总价值', w)