随机梯度下降

    class Perceptron(object):
        def __init__(self, input_num, activator):
            '''
            初始化感知器,设置输入参数的个数,以及激活函数。
            激活函数的类型为double -> double
            '''
            self.activator = activator
            # 权重向量初始化为0
            self.weights = [0.0 for _ in range(input_num)]
            # 偏置项初始化为0
            self.bias = 0.0
        def __str__(self):
            '''
            打印学习到的权重、偏置项
            '''
            return 'weights\t:%s\nbias\t:%f\n' % (self.weights, self.bias)
        def predict(self, input_vec):
            '''
            输入向量,输出感知器的计算结果
            '''
            # 把input_vec[x1,x2,x3...]和weights[w1,w2,w3,...]打包在一起
            # 变成[(x1,w1),(x2,w2),(x3,w3),...]
            # 然后利用map函数计算[x1*w1, x2*w2, x3*w3]
            # 最后利用reduce求和
            return self.activator(
                reduce(lambda a, b: a + b,
                       map(lambda (x, w): x * w,  
                           zip(input_vec, self.weights))
                    , 0.0) + self.bias)
        def train(self, input_vecs, labels, iteration, rate):
            '''
            输入训练数据:一组向量、与每个向量对应的label;以及训练轮数、学习率
            '''
            for i in range(iteration):
                self._one_iteration(input_vecs, labels, rate)
        def _one_iteration(self, input_vecs, labels, rate):
            '''
            一次迭代,把所有的训练数据过一遍
            '''
            # 把输入和输出打包在一起,成为样本的列表[(input_vec, label), ...]
            # 而每个训练样本是(input_vec, label)
            samples = zip(input_vecs, labels)
            # 对每个样本,按照感知器规则更新权重
            for (input_vec, label) in samples:
                # 计算感知器在当前权重下的输出
                output = self.predict(input_vec)
                # 更新权重
                self._update_weights(input_vec, output, label, rate)
        def _update_weights(self, input_vec, output, label, rate):
            '''
            按照感知器规则更新权重
            '''
            # 把input_vec[x1,x2,x3,...]和weights[w1,w2,w3,...]打包在一起
            # 变成[(x1,w1),(x2,w2),(x3,w3),...]
            # 然后利用感知器规则更新权重
            delta = label - output
            self.weights = map(
                lambda (x, w): w + rate * delta * x,
                zip(input_vec, self.weights))
            # 更新bias
            self.bias += rate * delta

    def f(x):
        '''
        定义激活函数f
        '''
        return 1 if x > 0 else 0
    def get_training_dataset():
        '''
        基于and真值表构建训练数据
        '''
        # 构建训练数据
        # 输入向量列表
        input_vecs = [[1,1], [0,0], [1,0], [0,1]]
        # 期望的输出列表,注意要与输入一一对应
        # [1,1] -> 1, [0,0] -> 0, [1,0] -> 0, [0,1] -> 0
        labels = [1, 0, 0, 0]
        return input_vecs, labels    
    def train_and_perceptron():
        '''
        使用and真值表训练感知器
        '''
        # 创建感知器,输入参数个数为2(因为and是二元函数),激活函数为f
        p = Perceptron(2, f)
        # 训练,迭代10轮, 学习速率为0.1
        input_vecs, labels = get_training_dataset()
        p.train(input_vecs, labels, 10, 0.1)
        #返回训练好的感知器
        return p
    if __name__ == '__main__': 
        # 训练and感知器
        and_perception = train_and_perceptron()
        # 打印训练获得的权重
        print and_perception
        # 测试
        print '1 and 1 = %d' % and_perception.predict([1, 1])
        print '0 and 0 = %d' % and_perception.predict([0, 0])
        print '1 and 0 = %d' % and_perception.predict([1, 0])
        print '0 and 1 = %d' % and_perception.predict([0, 1])

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值