特殊矩阵——三对角矩阵(Tridiagonal Matrix)

特殊矩阵——三对角矩阵(Tridiagonal Matrix)

注:压缩存储的矩阵可以分为特殊矩阵和稀疏矩阵。对于那些具有相同元素或零元素在矩阵中分布具有一定规律的矩阵,被称之为特殊矩阵。对于那些零元素数据远远多于非零元素数目,并且非零元素的分布没有规律的矩阵称之为稀疏矩阵。

1. 三对角矩阵的概念

  • 三对角矩阵就是对角线、邻近对角线的上下次对角线上有元素,其他位置均为0的矩阵。
  • 三对角矩阵是一种特殊的上Hessenberg矩阵(这个就是上三角矩阵加上下三角部分的第一条次对角线有元素,其他都为0元素)。

2. 三对角矩阵的特性

  • 设一个n*n的方阵A,对于矩阵A中的任一元素 aij ,当|i-j|>1时,有 aij=0(0in10jn1) 时,矩阵A为三对角矩阵。
  • 三对角矩阵中除主对角线及在主对角线上下最邻近的两条对角线上的元素外,所有其他元素均为0。

3. 三对角矩阵的压缩存储

  • 可以利用三对角矩阵的上述特性,只存储主对角线及其上、下两侧次对角线上的元素,其他的零元素一律不存储。对一个n*n的三对角方阵A,元素总数有 n2 个,而其中非零的元素共有3*n-2个。因此,存储三对角矩阵时最多只需存储3*n-2个元素。
    这里写图片描述
  • 可以仿照对称矩阵的压缩存储,可用一维数组B存储三对角矩阵A(这要区分两种存储方式:行优先方式和列优先方式)。
    (1)行优先方式存储
    这里写图片描述
    (2)列优先方式存储
    这里写图片描述

4. 三对角矩阵的实现

  • 文件:TridiagonalMatrix.h

    
    #include <iostream>
    
    
    using namespace std;
    
    //压缩存储后,存储对称方阵时最多只需存储n*(n+1)/2个元素
    
    #define GetTotalLen(n) 3 * n - 2                
    
    
    //按行优先方式存放三对角矩阵,矩阵元素下标对应的一维数组的下标
    
    #define GetIndexRow(i, j) 2 * i + j 
    
    
    //按列优先方式存放三对角矩阵,矩阵元素下标对应的一维数组的下标
    
    #define GetIndexCol(i, j) 2 * j + i
    
    
    
    class TridiagonalMatrix
    {
    public:
        TridiagonalMatrix(int order);
    
        ~TridiagonalMatrix();
    
    public:
        void create();                      //创建矩阵
    
        void destroy();                     //销毁矩阵
    
        void transpos();                    //矩阵转置
    
        int get_order();                    //获取矩阵阶数
    
        int* compressed_storage_row();      //压缩存储特殊矩阵——三对角矩阵,按行优先方式存放
    
        int* compressed_storage_col();      //压缩存储特殊矩阵——三对角矩阵,按列优先方式存放
    
        bool is_tridiagonal();              //判断矩阵是否为三对角矩阵
    
    public:
        friend ostream& operator<<(ostream& os, TridiagonalMatrix& m);    //输出矩阵
    
    private:
        int _order;
        int **_matrix;
    };
  • 文件:TridiagonalMatrix.cpp

    
    #include "TridiagonalMatrix.h"
    
    
    #include <math.h>
    
    
    TridiagonalMatrix::TridiagonalMatrix(int order)
    : _order(order), _matrix(new int*[order])
    {
        create();
    }
    
    TridiagonalMatrix::~TridiagonalMatrix()
    {
        destroy();
    }
    
    void TridiagonalMatrix::create()
    {
        for (int i = 0; i < _order; i++)
        {
            _matrix[i] = new int[_order];
            for (int j = 0; j < _order; j++)
            {
                if (abs(i-j) > 1)
                {
                    _matrix[i][j] = 0;
                }
                else
                {
                    _matrix[i][j] = 1;
                }
            }
        }
    }
    
    void TridiagonalMatrix::destroy()
    {
        for (int i = 0; i < _order; i++)
        {
            delete[] _matrix[i];
        }
        delete[] _matrix;
        _matrix = NULL;
    }
    
    void TridiagonalMatrix::transpos()
    {
        int temp = 0;
        for (int i = 0; i < _order; i++)
        {
            for (int j = 0; j < _order; j++)
            {
                temp = _matrix[i][j];
                _matrix[i][j] = _matrix[j][i];
                _matrix[j][i] = temp;
            }
        }
    }
    
    
    int TridiagonalMatrix::get_order()
    {
        return _order;
    }
    
    int* TridiagonalMatrix::compressed_storage_row()
    {
        int index = 0;
        int total_count = GetTotalLen(_order);
        int *a = new int[total_count];
        for (int i = 0; i < _order; i++)
        {
            for (int j = 0; j < _order; j++)
            {
                if (abs(i-j) <= 1)
                {
                    index = GetIndexRow(i, j);
                    a[index] = _matrix[i][j];
                }
            }   
        }
        return a;
    }
    
    int* TridiagonalMatrix::compressed_storage_col()
    {
        int index = 0;
        int total_count = GetTotalLen(_order);
        int *a = new int[total_count];
        for (int j = 0; j < _order; j++)
        {
            for (int i = 0; i < _order; i++)
            {
                if (abs(i - j) <= 1)
                {
                    index = GetIndexCol(i, j);
                    a[index] = _matrix[i][j];
                }
            }
        }
        return a;
    }
    
    bool TridiagonalMatrix::is_tridiagonal()
    {
        for (int i = 0; i < _order; i++)
        {
            for (int j = 0; j < _order; j++)
            {
                if ((abs(i-j) > 1) && (_matrix[i][j] != 0))
                {
                    return false;
                }
            }
        }
        return true;
    }
    
    ostream& operator<<(ostream& os, TridiagonalMatrix& m)
    {
        os << "三对角矩阵:" << endl;
        for (int i = 0; i < m._order; i++)
        {
            for (int j = 0; j < m._order; j++)
            {
                os << m._matrix[i][j] << " ";
            }
            os << endl;
        }
        return os;
    }
  • 文件:main.cpp

    
    #include "TridiagonalMatrix.h"
    
    
    int main()
    {
        int n = 0;
        cout << "请输入三对角矩阵的阶数,n = ";
        cin >> n;
    
        TridiagonalMatrix matrix(n);
        if (true == matrix.is_tridiagonal())
        {
            cout << "$ 输出三对角矩阵:" << endl;
            cout << matrix;//或operator<<(cout, matrix);
        }
    
        matrix.transpos();
        if (true == matrix.is_tridiagonal())
        {
            cout << "$ 输出转置后的三对角矩阵:" << endl;
            cout << matrix;//或operator<<(cout, matrix);
        }
    
        cout << "\n$ 输出压缩存储后的一维数组(按行优先方式存放):" << endl;
        int *arrayr = matrix.compressed_storage_row();
        for (int i = 0; i < GetTotalLen(matrix.get_order()); i++)
        {
            cout << arrayr[i] << " ";
        }
        cout << endl;
        delete[] arrayr;
    
        cout << "\n$ 输出压缩存储后的一维数组(按列优先方式存放):" << endl;
        int *arrayc = matrix.compressed_storage_col();
        for (int i = 0; i < GetTotalLen(matrix.get_order()); i++)
        {
            cout << arrayc[i] << " ";
        }
        cout << endl;
        delete[] arrayc;
    
        system("pause");
        return 0;
    }

参考文献:
[1]《数据结构(用面向对象方法与C++语言描述)(第2版)》殷人昆——第四章
[2] 百度搜索关键字:三对角线矩阵、多对角线矩阵

### 回答1: 三对角矩阵压缩存储下的转置矩阵可以通过以下算法求得: 1. 首先,将三对角矩阵压缩存储形式转换为一般矩阵的形式,即将矩阵中的非零元素放回原来的位置上,同时补充上缺失的零元素。 2. 然后,对于一般矩阵的转置矩阵,可以直接将原矩阵的行列互换得到。 3. 最后,将转置矩阵重新压缩存储,即可得到三对角矩阵压缩存储下的转置矩阵。 需要注意的是,在进行矩阵转置时,由于三对角矩阵特殊性质,可以直接交换矩阵的上下三角部分,而不需要对角线上的元素进行操作。 ### 回答2: 由于三对角矩阵压缩存储下,只存储非零元素,且只有主对角线、上对角线和下对角线有非零元素,因此我们可以通过遍历压缩存储后的矩阵,来构造转置后的矩阵。 假设三对角矩阵的维数为n,其压缩存储的三个一维数组分别为a、b、c,其中a存储主对角线元素,b存储上对角线元素,c存储下对角线元素。(注意此处并不保存对角线上的元素) 那么对于转置矩阵,其非零元素也只会存在于主对角线、上对角线和下对角线,因此我们可以构造一个新的三个一维数组a'、b'、c',分别存储转置矩阵的主对角线、上对角线和下对角线元素。 对于矩阵A的第i行第j列元素,它会出现在矩阵B的第j行第i列元素,因此我们只需要将A矩阵中的a[i]、b[i]、c[i]对应的元素值,分别存储到B矩阵的a'[i]、b'[i-1]、c'[i]位置上即可。 具体实现步骤如下: 1. 根据矩阵A的维数n,分别创建空数组a'、b'、c',长度均为n。 2. 遍历矩阵A的压缩存储数组a、b、c,对于每一个非零元素A[i][j],将其值存储到B[j][i]对应的位置上。 3. 对于压缩存储数组b、c,需要分别处理上对角线和下对角线元素。由于转置后的矩阵中,上对角线元素会出现在下对角线上,下对角线元素会出现在上对角线上,因此在处理上下对角线元素时,需要将它们对调并反转(即b->c,c->b)。 4. 返回构造好的转置矩阵B。 总的来说,三对角矩阵压缩存储下的转置矩阵可以通过遍历压缩存储后的矩阵,并将每个非零元素按照转置后的位置存储到新的压缩数组中,来得到。 ### 回答3: 首先,我们需要知道什么是三对角矩阵和它的压缩存储方式。 三对角矩阵是指对角线上方、下方各相邻一个对角线上的元素均为0的矩阵。例如,一个5阶的三对角矩阵可以表示为: a1 b1 0 0 0 c1 a2 b2 0 0 0 c2 a3 b3 0 0 c3 a4 b4 0 0 0 c4 a5 b5 其中,a1,a2...a5,b1,b2...b4,c1,c2...c4为矩阵中的元素。 压缩存储方式是指将三对角矩阵中的元素压缩成一个一维数组,只保留非零元素。例如,将上述5阶矩阵压缩存储为一个一维数组,即可得到: a1 b1 c1 a2 b2 c2 a3 b3 c3 a4 b4 c4 a5 b5 根据定义,转置矩阵的第i行第j列的元素等于原矩阵的第j行第i列元素。因此,要求三对角矩阵的转置,可以将原矩阵压缩存储数组中每个非零元素的下标进行互换(即原来在第i行第j列的元素在转置矩阵中应当在第j行第i列)。 具体实现过程如下: 1. 首先,将原矩阵压缩存储数组按照原顺序复制一份,记为A; 2. 对A中的所有下标进行互换操作。具体地,对于下标i,若它对应的行为m,列为n,则将A[i]放到其在转置矩阵中对应的位置,即A[n*(m-1)+i]。其中,下标从0开始计算。 例如,对于上述例子,按照以上步骤进行转置后可以得到: a1 c1 0 0 0 b1 a2 c2 0 0 0 b2 a3 c3 0 0 b3 a4 c4 0 0 0 b4 a5 c5 将该转置矩阵进行压缩存储,即得到: a1 c1 b1 a2 c2 b2 a3 c3 b3 a4 c4 b4 a5 c5 因此,设计算法求三对角矩阵压缩存储下的转置矩阵的时间复杂度为O(n),其中n为矩阵的大小。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值