深度学习
文章平均质量分 89
夜里惊羽
我心有猛虎
展开
-
论文阅读:Empirical software engineering experts on the use of students and professionals in experiments
题目:Empirical software engineering experts on the use of students and professionals in experimentsESE 2018一、论文背景论文动机论文对实证研究的定义、规划、执行与分析个人评价和理解原创 2021-02-27 20:39:38 · 326 阅读 · 0 评论 -
生成对抗网络的发展与应用
系统分析与设计课程个人感悟学号任课老师20215102衣杨年级姓名2020蔡倓本次课程作业我们小组选择在iOS环境下开发一款名为微头条的应用。在需求分析阶段,我负责整个系统的用例图的设计;在架构分析阶段,我负责系统关键类抽象和系统合并分析类图;在部件设计阶段,我负责分析并解决浏览咨询过程引起的并发冲突。在项目开发阶段,我主要负责服务端部分的开发⼯作,包括:(1)按照MVC三层架构,部署服务端代码;(2)设计MySQL数据库;(3)为客户端提供可访问的接⼝。在原创 2021-02-27 20:39:03 · 2615 阅读 · 2 评论 -
基于R语言的数据分析报告
基于R语言的数据分析报告学号:20215102姓名:蔡倓一、数据说明本文进行数据分析所使用的数据是共享单车运营数据,记录了共享单车租赁的时间、地点、环境(包括季节,温度,湿度)等数据。该数据集来自 kaggle 上的开源项目:https://www.kaggle.com/c/bike-sharing-demand/data。通过分析这份数据,我们能观察到共享单车被使用的一般规律,用户的使用习惯,环境对共享单车运营带来的影响等有用信息,能够更好地帮助共享单车运营方的管理和研究城市的流动性。二、数据原创 2021-02-27 20:38:39 · 48334 阅读 · 19 评论 -
模拟退火法、遗传算法求解多皇后问题
一、问题背景多皇后问题是一个经典的问题,在一个 N x N 的棋盘上放置 N 个皇后,使其不能互相攻击 (每行、每列、每一斜线上分别只能放置一个皇后) ,求解 N 皇后问题的复杂度随 N 呈指数级增加;传统的求解方法采用基于回溯算法的策略,当 N 过大时不再适用,转而使用启发式算法求解,目前常见的启发式算法包括模拟退火法、遗产算法、蚁群算法等,这些算法引入了随机因素,一般能快速地找到满意解;二、模拟退火法2.1 模拟退火的原理模拟退火法的原理和金属退火类似,在温度较高时更容易改变金属结构,在温度变原创 2020-12-05 22:23:01 · 832 阅读 · 0 评论 -
人工神经网络笔记(一)后向传播、随机最优化、设定超参数
人工神经网络笔记(一)后向传播、随机最优化、设定超参数Background propagationStochastic optimizationHyper-parameter tuning1、一个简单的神经网络其中,l(y,f(x:θ)l(y,f(x: \theta)l(y,f(x:θ) 代表损失函数,表示真实值和预测值之间的差距,模型参数 θ=[Wh,Wo,bh,bo]\thet...原创 2019-04-20 21:23:42 · 943 阅读 · 0 评论 -
数据挖掘(一)主题模型(Topic Modeling)
数据挖掘(一)主题模型(Topic Modeling)1. 主题建模的目的从文档集合中自动地找出一系列的主题(topics),每个文档集内可能有多个主题;主题:由众多词汇的概率分布(distribution)组成;常用模型:LDA, pLSA, pLSI等,是一种无监督的学习过程;Input: An unorganized collection of documents;Output...原创 2019-04-23 11:24:36 · 12592 阅读 · 0 评论 -
人工神经网络笔记(二)梯度爆炸与消失、批量归一化、过拟合问题
人工神经网络笔记(二)后向传播、随机最优化、设定超参数Gradient exploding and vanishingMini-batch issueOver-fitting issue1、Gradient exploding and vanishing1.1 模型训练过程STEP0: 预设超参数STEP1: 初始化模型参数STEP2: 重复训练过程(次数为epoch)STE...原创 2019-04-23 16:58:20 · 1505 阅读 · 0 评论