💮目录
文章目录
es环境配置
- java jdk:1.8及以上
- JAVA_HOME
- Path
- elasticsearch
- 解压即安装
- kibana
- 解压即安装
注意
kibana和es、ik分词的版本保持一致
增删改查操作
es第一天
我们在es中进行增删改查可以进入kibana-web界面进行,界面大概效果如下:
增
增加操作我们使用的是PUT关键字,具体代码如下:
# a1这个索引下面,doc这个类型下面创建1篇文档
PUT a1/doc/1
{
"name":"cyx的哈哈哈哈",
"age":18
}
点击运行之后会有如下的输出信息:
但是我们运行的时候会有卡顿,这是为什么呢?因为在第一次创建该a1索引的时候会先去检查之前有没有这个a1索引,如果有的话就不创建,如有没有才给创建,所以就多了一个检查的过程,我们可以在创建一个a1节点,这样速度就会很快了
查
取数据的关键词是GET,实例代码如下:
GET a1/doc/1
结果:
GET一个文档里面的全部信息那我们应该如何得到呢?
GET a1/doc/_search
结果如下所示:
查询一个集群里面的所有索引
GET _cat/indices
结果:
DSL结构化的查询语句
要求:查询所有age为18的数据:
GET a1/doc/_search
{
"query":{
"match": {
"age": 18
}
}
}
查询结果如下图所示:
match与查询match_phrase查询的区别
match查询会将查询的词语进行分词,比如我们现在的数据是:
现在需要搜索tags中含有有钱这个词语的数据有哪些,假如我们使用match关键字查询的话,这样会它会将有钱拆分为有和钱,然后将tags中包含有和钱这两个字的数据查询出来,按照符合程度叫降序排列,如下所示:
要是我们使用match_phrase查询的话,该关键字是词语查询,这样只有是这个词语的才会搜索出来
GET a1/doc/_search
{
"query": {
"match_phrase": {
"tags": "有钱"
}
}
}
slop关键字
这个关键字是词距的意思
GET a1/doc/_search
{
"query": {
"match_phrase": {
"docx": {
"query":"中国世界",
"slop":1
}
}
}
}
改
改语句的关键字为POST:
POST a1/doc/2/_update
{
"doc":{
"age":14
}
}
效果如下:
删
删除操作的关键字是DELETE,代码:
DELETE a1/doc/3
都删除
DELETE a1/
e
快速上手
- 逻辑设计,我们可以把elasticsearch与关系型数据做个客观对比:
Relational DB | Elastisearch |
---|---|
数据库(database) | 索引(indices) |
表(tables) | types |
行(rows) | documents |
字段(columns) | fields |
elasticsearch(集群)中可以包含多个索引(数据库),每个索引中可以包含多个类型(表),每个类型下又包含多个文档(行),每个文档中又包含多个字段(列)。
- 物理设计,在elasticsearch后台是如何处理这些数据的呢?elasticsearch将每个索引划分为多个分片,每份分片又可以在集群中的不同服务器间迁移。
逻辑设计:文档、类型、索引
一个索引类型中,包含多个文档,比如说文档1,文档2。当我们索引一篇文档时,可以通过这样的顺序找到它:索引
▷类型
▷文档ID
,通过这个组合我们就能索引到某个具体的文档。
注意:ID不必是整数,实际上它是个字符串。
文档
之前说elasticsearch是面向文档的,那么就意味着索引和搜索数据的最小单位是文档,elasticsearch
中,文档有几个重要属性:
- 自我包含,一篇文档同时包含字段和对应的值,也就是同时包含
key:value
- 可以是层次型的,一个文档中包含自文档,复杂的逻辑实体就是这么来的
- 灵活的结构,文档不依赖预先定义的模式,我们知道关系型数据库中,要提前定义字段才能使用,在elasticsearch中,对于字段是非常灵活的,有时候,我们可以忽略该字段,或者动态的添加一个新的字段。
- 文档是无模式的,也就是说,字段对应值的类型可以是不限类型的。
尽管我们可以随意的新增或者忽略某个字段,但是,每个字段的类型非常重要,比如一个年龄字段类型,可以是字符串也可以是整型。因为elasticsearch会保存字段和类型之间的映射及其他的设置。这种映射具体到每个映射的每种类型(因此带来的问题),这也是为什么在elasticsearch中,类型有时候也称为映射类型。
类型
类型是文档的逻辑容器,就像关系型数据库一样,表格是行的容器。
类型中对于字段的定义称为映射,比如name
映射为字符串类型。
我们说文档是无模式的,它们不需要拥有映射中所定义的所有字段,比如新增一个字段,那么elasticsearch是怎么做的呢?elasticsearch会自动的将新字段加入映射,但是这个字段的不确定它是什么类型,elasticsearch就开始猜,如果这个值是18,那么elasticsearch会认为它是整型。
但是elasticsearch也可能猜不对,所以最安全的方式就是提前定义好所需要的映射,这点跟关系型数据库殊途同归了,先定义好字段,然后再使用,别整什么幺蛾子。后面在讨论更多关于映射的东西。
索引
索引是映射类型的容器,elasticsearch中的索引是一个非常大的文档集合。索引存储了映射类型的字段和其他设置。然后它们被存储到了各个分片上了。
我们来研究下分片是如何工作的。
物理设计:节点和分片
一个集群包含至少一个节点,而一个节点就是一个elasticsearch进程。节点内可以有多个索引。
默认的,如果你创建一个索引,那么这个索引将会有5个分片(primary shard,又称主分片)构成,而每个分片又有一个副本(replica shard,又称复制分片),这样,就有了10个分片。
那么这个索引是如何存储在集群中的呢?
上图是一个有3个节点的集群,可以看到主分片和对应的复制分片都不会在同一个节点内,这样有利于某个节点挂掉了,数据也不至于丢失。
实际上,一个分片是一个Lucene索引,一个包含倒排索引的文件目录,倒排索引的结构使得elasticsearch在不扫描全部文档的情况下,就能告诉你哪些文档包含特定的关键字。
不过,等等,倒排索引是什么鬼?
倒排索引
elasticsearch使用的是一种称为倒排索引的结构,采用Lucene倒排索作为底层。这种结构适用于快速的全文搜索,一个索引由文档中所有不重复的列表构成,对于每一个词,都有一个包含它的文档列表。
倒排列表(Posting List)记录了词条对应的文档集合,由倒排索引项(Posting)组成。
倒排索引项主要包含如下信息:
- 文档id,用于获取原始信息。
- 词条频率(TF,Term Frequency),记录该词条在文档中出现的次数,用于后续相关性算分。
- 位置(Position),记录词条在文档中的分词位置(多个),用于做短语搜索(Phrase Query)。
- 偏移(Offset),记录词条在文档的开始和结束位置,用于做高亮显示。
以搜索引擎
为例:
文档id | 文档内容 |
---|---|
1 | elasticsearch是最流行的搜索引擎 |
2 | Python是世界上最好的语言 |
3 | 搜索引擎是如何诞生的 |
上述文档的倒排索引列表是这样的:
DocID | TF | Position | Offset |
---|---|---|---|
1 | 1 | 2 | <18,22> |
3 | 1 | 0 | <0,4> |
关于文档1,DocID
是1无需多说,TF
是1表示搜索引擎
在文档内容中出现一次,Position
指的是分词后的位置,首先要说文档内容会被分为elasticsearch
、最流行
、搜索引擎
3部分,从0开始计算,搜索引擎
的Position
是2;Offset
是搜索引擎
这个字符在文档中的位置。
文档3中搜索引擎
在文档中出现一次(TF:1),并且出现在文档的开始位置(Position:0),那么Offset
的位置就是<0,4>
无疑了。
再比如说,现在有两个文档, 每个文档包含如下内容:
Study every day, good good up to forever # 文档1包含的内容
To forever, study every day, good good up # 文档2包含的内容
为了创建倒排索引,我们首先要将每个文档拆分成独立的词(或称为词条或者tokens),然后创建一个包含所有不重复的词条的排序列表,然后列出每个词条出现在哪个文档:
term | doc_1 | doc_2 |
---|---|---|
Study | √ | × |
To | × | √ |
every | √ | √ |
forever | √ | √ |
day | √ | √ |
study | × | √ |
good | √ | √ |
every | √ | √ |
to | √ | × |
up | √ | √ |
现在,我们试图搜索to forever
,只需要查看包含每个词条的文档:
term | doc_1 | doc_2 |
---|---|---|
to | √ | × |
forever | √ | √ |
total | 2 | 1 |
两个文档都匹配,但是第一个文档比第二个匹配程度更高。如果没有别的条件,现在,这两个包含关键字的文档都将返回。
再来看一个示例,比如我们通过博客标签来搜索博客文章。那么倒排索引列表就是这样的一个结构:
如果要搜索含有python
标签的文章,那相对于查找所有原始数据而言,查找倒排索引后的数据将会快的多。只需要查看标签这一栏,然后获取相关的文章ID即可。
elasticsearch的索引和Lucene的索引对比
在elasticsearch中,索引
这个词被频繁使用,这就是术语的使用。
并且elasticsearch将索引被分为多个分片,每份分片是一个Lucene的索引。所以一个elasticsearch索引是由多个Lucene索引组成的。别问为什么,谁让elasticsearch使用Lucene作为底层呢!