整数分解与RSA密码系统详解
1. 欧拉公式与模pq的根
在密码学中,Diffie - Hellman密钥交换方法和ElGamal公钥密码系统依赖于一个重要事实:计算 $a^n \bmod p$ 容易,但仅知道 $a$ 和 $a^n \bmod p$ 的值时,恢复指数 $n$ 却很困难。分析这两个系统安全性的关键是费马小定理,即对于所有 $a \not\equiv 0 \pmod{p}$,有 $a^{p - 1} \equiv 1 \pmod{p}$。
当我们将素数 $p$ 替换为非素数 $m$ 时,$a^{m - 1} \equiv 1 \pmod{m}$ 并不总是成立。我们以 $m = 15$ 为例,列出平方和立方模15的表格,发现很多数的四次方模15等于1。具体来说,当 $a = 1, 2, 4, 7, 8, 11, 13, 14$ 时,$a^4 \equiv 1 \pmod{15}$;而当 $a = 3, 5, 6, 9, 10, 12$ 时,$a^4 \not\equiv 1 \pmod{15}$。经过分析,前者与15互质,后者与15有非平凡公因子,这表明当 $a$ 与模 $m$ 互质时,费马小定理的某种形式可能成立,但正确的指数不一定是 $m - 1$。
对于 $m = 15$,合适的指数是4。为证明 $a^4 \equiv 1 \pmod{15}$,只需验证 $a^4 \equiv 1 \pmod{3}$ 和 $a^4 \equiv 1 \pmod{5}$。因为这两个同余式意味着3和5都能整除 $a^4 - 1$,从而15也能整除 $a^4 - 1$。利用费马小定理可以验证这两个同余式:
- $a^4 = (a^2)^2 = (a^{(3 - 1)})^2
超级会员免费看
订阅专栏 解锁全文
7277

被折叠的 条评论
为什么被折叠?



