异常事件检测与高光谱图像分类的技术探索
异常事件检测
在视频监控领域,异常事件检测是一个重要的研究方向。过去,研究者们采用了多种方法来实现这一目标。
早期的方法包括:
- Kratz等人计算局部时空运动模式,结合隐马尔可夫模型(HMM)在极度拥挤场景中进行异常检测。
- Jeong等人利用轨迹进行特征提取,并应用LDA + GMM技术进行交通异常检测。
- Piciarelli等人采用基于高斯核的轨迹子采样方法进行特征提取,使用一类支持向量机(SVM)聚类检测异常事件。
- Medioni等人计算HOF网格进行特征表示,再用一类SVM在拥挤场景中检测视觉异常事件。
近年来,深度学习方法在异常事件检测中取得了成功:
- Xu等人使用堆叠去噪自动编码器(SDAE)基于早期融合机制学习外观和运动特征。
- Chong等人使用卷积时空自动编码器从视频中学习深度特征。
- Hasan等人将手工特征(HOG和HOF)与卷积自动编码器(CAE)结合提取深度特征。
- Vu等人使用受限玻尔兹曼机(RBM)进行视频异常检测。
- Tran等人使用C3D架构学习时空特征进行动作识别。
- Sultani等人使用基于C3D架构的深度多实例学习框架和SVM分类器进行监控视频中的异常检测。
- Medel等人使用卷积长短期记忆网络进行视频异常检测。
- Hinami等人设计了多测试快速R - CNN用于检测和统计视频中的异常事件。
然而,这些复杂的深度学习方法大多具有较高的计算复杂度,不适合实时实现。因此,提出了一种双流2D - CNN架构来解决这个问题。
超级会员免费看
订阅专栏 解锁全文
39

被折叠的 条评论
为什么被折叠?



