高光谱图像分类与乳腺癌检测的创新方法
高光谱图像分类的3D CNN架构
在高光谱图像分类(HSIC)领域,众多研究不断推进技术发展。一些学者提出了不同的方法,如Chen等人将逻辑回归作为激光雷达(LIDAR)和高光谱(HS)图像组合数据的最终分类器;Lee等人提出了一种上下文深度卷积神经网络(CNN),通过同时提取不同大小的多个三维局部卷积特征,联合利用HS图像的空间和光谱特征;Hamida等人则提出了一个3D CNN原型,以促进对HS图像的空间和光谱特征进行联合研究。
本文提出了一种使用残差块的新型3D CNN架构用于HSIC。残差块的作用是保留早期卷积层的特征,通过使用四个残差块来融合原始和抽象信息,从低级和高级抽象中学习空间 - 光谱特征,从而实现强大的性能。
每个高光谱图像中的像素可看作一个包含空间和光谱数据的立方体,其结构为1×1×S,其中1×1是空间数据维度,S是连续的窄光谱带,这些光谱带在HS图像中以多个通道进行数字表示。
3D卷积特征(3DCF)的计算通过以下公式实现:
- (3DCF(HSIS) = w4(w3(w2(w1(HSIS)))))
- (w1(z) = ap_{1,1,3}(j_{20,1,1,1}(\lt(j_{20,3,3,3} * z))))
- (w2(z) = ap_{1,1,3}(j_{30,1,1,1}(\lt(j_{35,3,3,3} * z))))
- (w3(z) = j_{35,1,1,1}(\lt(j_{35,1,1,3} * z)))
- (w4(z) = j_{35,1,1,1}(\lt(j_{35,1,1,2} * z)))
其中,