模型构建与回归分析
1. 函数发现
函数发现是利用数据图来获取描述数据生成过程的数学函数或“数学模型”的技术。常见能描述物理现象的函数类型有:
- 线性函数 :$y(x) = mx + b$,其中$y(0) = b$。
- 幂函数 :$y(x) = bx^m$,当$m > 0$时,$y(0) = 0$;当$m < 0$时,$y(0) = \infty$。
- 指数函数 :$y(x) = b(10)^{mx}$或其等价形式$y = be^{mx}$($e$为自然对数的底数,$\ln e = 1$),两种形式下$y(0) = b$。
这些函数在特定坐标轴绘制时会呈现直线:
| 函数类型 | 绘制坐标轴 |
| ---- | ---- |
| 线性函数$y = mx + b$ | 直角坐标轴 |
| 幂函数$y = bx^m$ | 双对数坐标轴 |
| 指数函数$y = b(10)^{mx}$和$y = be^{mx}$ | $y$轴为对数的半对数坐标轴 |
寻找描述给定数据集的函数步骤如下:
1. 检查原点附近的数据 :指数函数除非$b = 0$(平凡情况),否则不会过原点;线性函数仅当$b = 0$时过原点;幂函数仅当$m > 0$时过原点。
2. 用直角刻度绘制数据 :若数据形成直线,则可用线性函数表示;若有$x = 0$的数据,$y(0) > 0$尝试幂函数,$y(0)
超级会员免费看
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



