高数
Cake_C
小呆子一枚,学吧学吧。 有什么疑问可能不及时看csdn,可以投送opelac@qq.com。有空就会回复!我自己不会的话也可以一起探讨~
展开
-
高数复习(4)--格林公式的理解
(非证明,仅供自己理解)---------------------------公式-----------------------------非常简单美观,而且实用,巧妙的把对坐标的曲线积分(一般这个难)转化到二重积分上。---------------------------理解-----------------------------就等号成立的可能性上来说,直观感觉应该是好理解的牛顿莱布尼兹公式能把一维的线上(x轴)的积分转化为原函数两端点的做差那么凭什么格林公式就不能把二维面上的积分转化为原创 2020-08-22 16:58:23 · 18186 阅读 · 21 评论 -
高数复习(3)--曲线积分的理解
(非证明,仅供自己理解)---------------------------公式-----------------------------对弧长的曲线积分:对坐标的曲线积分:---------------------------理解-----------------------------对弧长的曲线积分:对弧长的曲线积分,最重要的理解点在于弧长微元ds的等价转化到用x、y相关变量表示。(f( x , y ) 是曲线上某点对应坐标的参数(比如曲线的 (x,y) 处质量))当弧长微元极小原创 2020-08-20 10:15:25 · 3579 阅读 · 0 评论 -
高数复习(2)--方向导数与梯度的理解 附根据梯度求轨迹的基本模型
(非证明,仅供理解)---------------------------公式-----------------------------方向导数:其中 l 是给定的一个射线的方向向量,(cosα)i+(cosβ)j+(cosγ)k构成其方向余弦梯度:是一个向量表达式,对于不同的( x , y , z )总是指向增量最大的方向---------------------------理解-----------------------------方向导数:放在空间坐标系中的曲面 z = f( x ,原创 2020-08-11 20:13:22 · 3264 阅读 · 0 评论 -
高数复习(1)--曲线切向与曲面法向的理解
(非证明,仅供理解)(实在是很好用忍不住写下来)---------------------------结论-----------------------------对于曲线上某点( x0 , y0 , z0 )来说(dx,dy,dz) 就是曲线该点的切向量对于曲面F( x , y , z ) = 0上某点( x0 , y0 , z0 )来说(Fx’,Fy’,Fz’) 就是曲面该点的法向量---------------------------解释--------------------------原创 2020-08-10 18:54:20 · 19368 阅读 · 6 评论