基于序贯重要性重采样的粒子滤波and(RBPF)

尽管高斯逼近可以有效的解决许多问题,但当滤波分布为多模型或者某些状态为离散时,高斯逼近将不再适用。

在贝叶斯推理中,主要的推理问题可简化为求解下列后验分布的期望值:
在这里插入图片描述上式通常需要利用数值计算求解,其中在理想的蒙特卡洛逼近中,抽取 N \bm{N} N个独立的随机样本 x ( i ) \bm{x^{(i)}} x(i),且有 x ( i ) ∼ p ( x ∣ y 1 : T ) , i = 1 , ⋅ ⋅ ⋅ , N \bm{x^{(i)}\sim p(x|y_{1:T})}, i=1,\cdot \cdot \cdot, N x(i)p(xy1:T),i=1,,N。故期望的表达式为:
在这里插入图片描述

重要性采样

在实际的贝叶斯模型中,由于函数比较复杂,难以直接从 p ( x ∣ y 1 : T ) \bm{ p(x|y_{1:T})} p(xy1:T)获取样本。故采用重要性采样,重重要性分布 π ( x ∣ y 1 : T ) \bm{ \pi(x|y_{1:T})} π(xy1:T)中获取样本。将原先的积分式构造成函数关于重要性分布的积分式:在这里插入图片描述其中,
在这里插入图片描述则期望值可近似为:
在这里插入图片描述其权值为:
在这里插入图片描述

重要性采样算法

已知量测模型 p ( y 1 : T ∣ x ) \bm{p(y_{1:T}|x)} p(y1:Tx)和先验分布 p ( x ) \bm{p(x)} p(x),后验部分的重要性采样逼近为:
1). 重要性分布中抽取 N \bm{N} N个样本:
在这里插入图片描述2). 计算非归一化权值:
在这里插入图片描述归一化权值为:
在这里插入图片描述3). 由此可得 g ( x ) \bm{g(x)} g(x)的后验分布的期望逼近为:
在这里插入图片描述后验概率密度逼近为:
在这里插入图片描述式中, δ ( ⋅ ) \bm{\delta(\cdot)} δ()为狄拉克函数。

序贯重要性重采样SIR(粒子滤波)

其中,序贯重要性采样(SIS)是对重要性采样的一种序列形式,该算法可对一般状态空间模型的滤波分布进行重要性采样。

在序贯序贯重要性采样中,存在大多是粒子的权值为零或者近似为零。这一现象称为粒子退化问题。利用重采样法可以解决粒子退化的问题。

从先验分布中抽取 N \bm{N} N个样本 x 0 ( i ) \bm{x^{(i)}_0} x0(i)
在这里插入图片描述对所有的 i = 1 , ⋅ ⋅ ⋅ , N \bm{i = 1, \cdot \cdot \cdot, N} i=1,,N,令 w 0 ( i ) = 1 N \bm{w_0^{(i)}=\frac{1}{N}} w0(i)=N1
对每个 k = 1 , ⋅ ⋅ ⋅ , T \bm{k=1, \cdot \cdot \cdot, T} k=1,,T 有:
1). 从重要性分布中抽取 x k ( i ) x_k^{(i)} xk(i):
在这里插入图片描述2). 计算权值:
在这里插入图片描述将权值归一化,使其和为1.
3). 估计有效粒子数, n e f f \bm{n_{eff}} neff。若有效粒子数过少,则执行重采样。
在这里插入图片描述

该算法的性能2依赖于重要性分布 π ( ⋅ ) \bm{\pi(\cdot)} π()的选择。重要性分布应满足易于从重要性分布中抽取样本,且能够计算样本点的概率密度为原则。方差最优重要性分布为;
在这里插入图片描述如果最优重要性分布不能直接实现,则可通过进行局部线性化得到。利用扩展卡尔曼滤波EKF,无迹卡尔曼滤波UKF等非线性卡尔曼滤波器,可得到重要性分布。

重采样过程

从离散分布中抽取N个样本来带替旧的样本集。具体参考下链接:
https://www.cnblogs.com/gary-guo/p/6244011.html

Rao-Blackwellized粒子滤波RBPF(混合卡尔曼滤波器MKF)

其思想是对滤波方程计算解析解,而其他方程用蒙特卡罗采样代替纯采样进行估计。
常见的 R a o − B l a c k w e l l i z e d \bm{Rao-Blackwellized} RaoBlackwellized粒子滤波方程是指线性高斯模型条件分布的边缘化滤波:
在这里插入图片描述式中, x k \bm{x_k} xk为状态量, y k \bm{y_k} yk为量测量, u k \bm{u_k} uk为任意未知变量。

滤波步骤:
已知重要性分布序列 π ( u k ∣ u 0 , k − 1 ( i ) , y 1 : k ) \pi(u_k|u^{(i)}_{0,k-1}, y_{1:k}) π(uku0,k1(i),y1:k)和带权值的样本集

{ w k − 1 ( i ) , u k − 1 ( i ) , m k − 1 ( i ) , P k − 1 ( i ) : i = 1 , 2 , ⋅ ⋅ ⋅ . N } \bm{\{w^{(i)}_{k-1},u^{(i)}_{k-1},m^{(i)}_{k-1},P^{(i)}_{k-1}:i=1,2,\cdot \cdot \cdot.N\}} {wk1(i),uk1(i),mk1(i),Pk1(i):i=1,2,.N}

则利用RBPF对量测量 y k y_k yk进行解算步骤如下:
1). 首先提取潜在变量 u k − 1 ( i ) \bm{u^{(i)}_{k-1}} uk1(i),对每个粒子 i = 1 , 2 , ⋅ ⋅ ⋅ , N i=1,2,\cdot \cdot \cdot, N i=1,2,,N计算出卡尔曼滤波的预测均值和预测协方差:
在这里插入图片描述2). 对每个粒子 i = 1 , 2 , ⋅ ⋅ ⋅ , N i=1,2,\cdot \cdot \cdot, N i=1,2,,N,从相应的重要性分布中提取新的钱潜变量 u k ( i ) \bm{u^{(i)}_k} uk(i):
在这里插入图片描述3). 计算新的权值:
在这里插入图片描述由上始可知,卡尔曼滤波的模型参数是所提取潜在变量 u k ( i ) \bm{u^{(i)}_k} uk(i)的条件分布,且其权值归一化为1;式中,似然项为卡尔曼滤波边缘量测量的似然分布:
在这里插入图片描述4). 根据潜变量 u k ( i ) \bm{u^{(i)}_k} uk(i),对每个粒子执行卡尔曼滤波更新:
在这里插入图片描述5). 若有效粒子数过少,则执行重采样操作。

RBPF粒子滤波器在每 k \bm{k} k个时刻产生一个权值样本集

{ w k ( i ) , u k ( i ) , m k ( i ) , P k ( i ) : i = 1 , 2 , ⋅ ⋅ ⋅ . N } \bm{\{w^{(i)}_{k},u^{(i)}_{k},m^{(i)}_{k},P^{(i)}_{k}:i=1,2,\cdot \cdot \cdot.N\}} {wk(i),uk(i),mk(i),Pk(i):i=1,2,.N},因此函数 g ( ⋅ ) \bm{g(\cdot)} g()的期望可近似为:
在这里插入图片描述同理,RBPF也可表述为一下滤波分布的逼近:
在这里插入图片描述RBPF中使重要性权值方差最小化的重要性分布,即最优重要性分布为在这里插入图片描述
卒。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值