LeetCode215 数组中的第K个最大元素(分治 | 快速排序)

该博客介绍了LeetCode第215题的解决方案,包括暴力求解、大根堆实现和分治策略(使用STL的nth_element)。文章详细解析了每种方法的时间复杂度和空间复杂度,并提供了C++代码实现,特别关注了分治策略中的三路划分优化来找到数组中第k大的数。
摘要由CSDN通过智能技术生成

题目链接:leetcode215

题面

在这里插入图片描述

题目大意

求数组中第k大的数,注意区分第k大和第k小。

解题思路

暴力

每次选取一个当前最大值,重复 K 次即可找到答案

时间复杂度 O ( n k ) O(nk) O(nk),空间复杂度 O ( 1 ) O(1) O(1)


大根堆

维护一个大根堆,取前 K 个堆顶元素即可找到答案。

时间复杂度 O ( n + l o g 2 n k ) O(n+log_2n^k) O(n+log2nk),空间复杂度 O ( n ) O(n) O(n)


分治

实际上就是利用快速排序的思想,每次去确定一个数的位置,然后分治两端,但是这边只需治理包含 k 的元素的那半边即可。

这部分的逻辑可以用STL的 nth_element 解决,具体讲解见 传送门

时间复杂度 O ( n ) O(n) O(n) ,空间复杂度 O ( l o g 2 n ) O(log_2n) O(log2n)

注意:代码中我还加了三路划分优化


代码实现

class Solution {
public:
    int findKthLargest(vector<int>& nums, int k) {
        return getTopKSmall(nums, 0, nums.size()-1, nums.size()-k);
    }
    
    int getTopKSmall(vector<int>& nums, int l, int r, int k) {
        if (l > r) return -1;
        int pat = nums[rand()%(r-l+1)+l];
        int lp = l, rp = r, i = l;        
        while (i <= rp) {
            if (nums[i] == pat) i++;
            else if (nums[i] < pat) swap(nums[i++], nums[lp++]);
            else swap(nums[i], nums[rp--]);
        }
        if (l + k < lp) return getTopKSmall(nums, l, lp-1, k);
        if (l + k > rp) return getTopKSmall(nums, rp+1, r, k-rp+l-1);
        return nums[k + l];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小胡同的诗

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值