ARCH(1)的参数估计——公式推导

ARCH(1)

y t = ϵ t y_t=\epsilon_t yt=ϵt

其中, ϵ t = η t h t \epsilon_t=\eta_t\sqrt{h_t} ϵt=ηtht h t = α 0 + α 1 ϵ t − 1 2 h_t=\alpha_0+\alpha_1\epsilon_{t-1}^2 ht=α0+α1ϵt12
η t ∼ i . i . d . N ( 0 , 1 ) \eta_t\mathop{\sim}\limits^{i.i.d.}N(0,1) ηti.i.d.N(0,1)

极大似然估计

假设观测数据集为 { y 1 , … , y T } \{y_1,\ldots,y_T\} {y1,,yT},令 θ = ( α 0 , α 1 ) ′ \theta=(\alpha_0,\alpha_1)^\prime θ=(α0,α1)
L ( θ ) = f θ ( y 1 , … , y T ) = ∏ t = 2 T f θ ( y t ∣ y t − 1 , … , y 1 ) f θ ( y 1 ) = ∏ t = 2 T f θ ( y t ∣ y t − 1 ) f θ ( y 1 ) = ∏ t = 2 T f θ ( y t ∣ ϵ t − 1 ) f θ ( y 1 ) \begin{align*} L(\theta)&=f_\theta(y_1,\ldots,y_T) \\ &=\prod\limits_{t=2}^Tf_\theta(y_t|y_{t-1},\ldots,y_1)f_\theta(y_1) \\ &=\prod\limits_{t=2}^Tf_\theta(y_t|y_{t-1})f_\theta(y_1) \\ &=\prod\limits_{t=2}^Tf_\theta(y_t|\epsilon_{t-1})f_\theta(y_1) \end{align*} L(θ)=fθ(y1,,yT)=t=2Tfθ(ytyt1,,y1)fθ(y1)=t=2Tfθ(ytyt1)fθ(y1)=t=2Tfθ(ytϵt1)fθ(y1)

y 1 ∼ N ( 0 , α 0 1 − α 1 ) y_1\sim N(0,\dfrac{\alpha_0}{1-\alpha_1}) y1N(0,1α1α0)

y t = ϵ t y_t=\epsilon_t yt=ϵt可知, y t y_t yt服从正态分布,且 E y t = 0 Ey_t=0 Eyt=0

V a r ( y t ) = E y t 2 = E η t 2 ( α 0 + α 1 ϵ t − 1 2 ) = E η t 2 ( α 0 + α 1 y t − 1 2 ) = α 0 + α 1 E y t − 1 2 Var(y_t)=Ey_t^2=E\eta^2_t(\alpha_0+\alpha_1\epsilon_{t-1}^2)=E\eta^2_t(\alpha_0+\alpha_1y_{t-1}^2)=\alpha_0+\alpha_1Ey_{t-1}^2 Var(yt)=Eyt2=Eηt2(α0+α1ϵt12)=Eηt2(α0+α1yt12)=α0+α1Eyt12
y t y_t yt平稳可知二阶矩不随时间变化,即 E y t 2 = E y t − 1 2 Ey_t^2=Ey_{t-1}^2 Eyt2=Eyt12,故有
V a r ( y t ) = α 0 1 − α 1 Var(y_t)=\dfrac{\alpha_0}{1-\alpha_1} Var(yt)=1α1α0

y t ∣ y t − 1 ∼ N ( 0 , α 0 + α 1 y t − 1 2 ) y_t|y_{t-1}\sim N(0,\alpha_0+\alpha_1y_{t-1}^2) ytyt1N(0,α0+α1yt12)

E y t ∣ y t − 1 = E y t ∣ ϵ t − 1 = E η t α 0 + α 1 ϵ t − 1 2 ∣ ϵ t − 1 = E η t ∣ ϵ t − 1 E α 0 + α 1 ϵ t − 1 2 ∣ ϵ t − 1 = 0 Ey_t|y_{t-1}=Ey_t|\epsilon_{t-1}=E\eta_t\sqrt{\alpha_0+\alpha_1\epsilon_{t-1}^2}|\epsilon_{t-1}=E\eta_t|\epsilon_{t-1}E\sqrt{\alpha_0+\alpha_1\epsilon_{t-1}^2}|\epsilon_{t-1}=0 Eytyt1=Eytϵt1=Eηtα0+α1ϵt12 ϵt1=Eηtϵt1Eα0+α1ϵt12 ϵt1=0

V a r ( y t ∣ y t − 1 ) = ( α 0 + α 1 y t − 1 2 ) V a r ( η t ) = α 0 + α 1 y t − 1 2 Var(y_t|y_{t-1})=(\alpha_0+\alpha_1y_{t-1}^2)Var(\eta_t)=\alpha_0+\alpha_1y_{t-1}^2 Var(ytyt1)=(α0+α1yt12)Var(ηt)=α0+α1yt12

综上可得:
L ( θ ) = ∏ t = 2 T 1 2 π ( α 0 + α 1 y t − 1 2 ) e x p ( − y t 2 2 ( α 0 + α 1 y t − 1 2 ) ) 1 2 π α 0 / ( 1 − α 1 ) e x p ( − y 1 2 2 α 0 / ( 1 − α 1 ) ) L(\theta)=\prod\limits_{t=2}^T\dfrac{1}{\sqrt{2\pi(\alpha_0+\alpha_1y_{t-1}^2)}}exp\left(-\dfrac{y_t^2}{2(\alpha_0+\alpha_1y_{t-1^2})} \right)\dfrac{1}{\sqrt{2\pi\alpha_0/(1-\alpha_1)}}exp\left( -\dfrac{y_1^2}{2\alpha_0/(1-\alpha_1)} \right) L(θ)=t=2T2π(α0+α1yt12) 1exp(2(α0+α1yt12)yt2)2πα0/(1α1) 1exp(2α0/(1α1)y12)

− l n L ( θ ) -lnL(\theta) lnL(θ)采用梯度下降求解得参数估计

条件似然估计

在给定 y 0 y_0 y0的条件下,似然函数为:
L ( θ ) = f θ ( y 1 , … , y T ∣ y 0 ) = ∏ t = 1 T f θ ( y t ∣ y t − 1 ) = ∏ t = 1 T 1 2 π ( α 0 + α 1 y t − 1 2 ) e x p ( − y t 2 2 ( α 0 + α 1 y t − 1 2 ) ) \begin{align*} L(\theta)&=f_\theta(y_1,\ldots,y_T|y_0) \\ &=\prod\limits_{t=1}^Tf_\theta(y_t|y_{t-1}) \\ &=\prod\limits_{t=1}^T\dfrac{1}{\sqrt{2\pi(\alpha_0+\alpha_1y_{t-1}^2)}}exp\left( -\dfrac{y_t^2}{2(\alpha_0+\alpha_1y_{t-1}^2)} \right) \end{align*} L(θ)=fθ(y1,,yTy0)=t=1Tfθ(ytyt1)=t=1T2π(α0+α1yt12) 1exp(2(α0+α1yt12)yt2)

y t ∣ y t − 1 ∼ N ( 0 , α 0 + α 1 y t − 1 2 ) y_t|y_{t-1}\sim N(0,\alpha_0+\alpha_1y_{t-1}^2) ytyt1N(0,α0+α1yt12)

同样对 − l n L ( θ ) -lnL(\theta) lnL(θ)利用梯度下降求解得参数估计。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

quantao_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值