MA(1)的参数估计——公式推导

Problem


M A ( 1 ) MA(1) MA(1)模型为: y t = θ 0 + θ 1 ϵ t − 1 + ϵ t y_t=\theta_0+\theta_1\epsilon_{t-1}+\epsilon_t yt=θ0+θ1ϵt1+ϵt,其中 ϵ t ∼ i . i . d . N ( 0 , σ ϵ 2 ) \epsilon_t\mathop{\sim}\limits^{i.i.d.} N(0,\sigma_\epsilon^2) ϵti.i.d.N(0,σϵ2)

极大似然估计


假设观测数据集为 { y 1 , … , y T } \{y_1,\ldots,y_T\} {y1,,yT},令 θ = ( θ 0 , θ 1 , σ ϵ 2 ) ′ \theta=(\theta_0,\theta_1,\sigma_\epsilon^2)^\prime θ=(θ0,θ1,σϵ2) y = ( y 1 , … , y T ) ′ y=(y_1,\ldots,y_T)^\prime y=(y1,,yT)
我们有 ( y 1 , … , y T ) ∼ N T ( μ , Σ ) (y_1,\ldots,y_T)\sim N_T(\mu,\Sigma) (y1,,yT)NT(μ,Σ)

在精确似然估计中我们假设 ( y 1 , … , y T ) (y_1,\ldots,y_T) (y1,,yT)服从多元正态分布

μ = ( θ 0 , … , θ 0 ) ′ \mu=(\theta_0,\ldots,\theta_0)^\prime μ=(θ0,,θ0)

E y t = E θ 0 + E θ 1 ϵ t − 1 + E ϵ t = θ 0 Ey_t=E\theta_0+E\theta_1\epsilon_{t-1}+E\epsilon_t=\theta_0 Eyt=Eθ0+Eθ1ϵt1+Eϵt=θ0

Σ = ( C o v ( y 1 , y 1 ) C o v ( y 1 , y 2 ) C o v ( y 1 , y 3 ) … C o v ( y 1 , y T ) C o v ( y 2 , y 1 ) C o v ( y 2 , y 2 ) C o v ( y 2 , y 3 ) … C o v ( y 2 , y T ) C o v ( y 3 , y 1 ) C o v ( y 3 , y 2 ) C o v ( y 3 , y 3 ) … C o v ( y 3 , y T ) ⋮ ⋮ ⋮ ⋱ ⋮ C o v ( y T , y 1 ) C o v ( y T , y 2 ) C o v ( y T , y 3 ) … C o v ( y T , y T ) ) = ( ( 1 + θ 1 2 ) σ ϵ 2 θ 1 σ ϵ 2 0 … 0 θ 1 σ ϵ 2 ( 1 + θ 1 2 ) σ ϵ 2 θ 1 σ ϵ 2 … 0 0 θ 1 σ ϵ 2 ( 1 + θ 1 ) σ ϵ 2 … 0 ⋮ ⋮ ⋮ ⋱ ⋮ 0 0 0 … θ 1 σ ϵ 2 0 0 0 … ( 1 + θ 1 ) σ ϵ 2 ) \Sigma=\left(\begin{matrix} Cov(y_1,y_1)&Cov(y_1,y_2)&Cov(y_1,y_3)&\ldots&Cov(y_1,y_T) \\ Cov(y_2,y_1)&Cov(y_2,y_2)&Cov(y_2,y_3)&\ldots&Cov(y_2,y_T) \\ Cov(y_3,y_1)&Cov(y_3,y_2)&Cov(y_3,y_3)&\ldots&Cov(y_3,y_T) \\ \vdots&\vdots&\vdots&\ddots&\vdots \\ Cov(y_T,y_1)&Cov(y_T,y_2)&Cov(y_T,y_3)&\ldots&Cov(y_T,y_T) \end{matrix}\right)=\left(\begin{matrix} (1+\theta^2_1)\sigma_\epsilon^2&\theta_1\sigma_\epsilon^2&0&\ldots&0 \\ \theta_1\sigma_\epsilon^2&(1+\theta_1^2)\sigma_\epsilon^2&\theta_1\sigma_\epsilon^2&\ldots&0 \\ 0&\theta_1\sigma_\epsilon^2&(1+\theta_1)\sigma_\epsilon^2&\ldots&0 \\ \vdots&\vdots&\vdots&\ddots&\vdots \\ 0&0&0&\ldots&\theta_1\sigma_\epsilon^2 \\ 0&0&0&\ldots&(1+\theta_1)\sigma_\epsilon^2 \end{matrix}\right) Σ= Cov(y1,y1)Cov(y2,y1)Cov(y3,y1)Cov(yT,y1)Cov(y1,y2)Cov(y2,y2)Cov(y3,y2)Cov(yT,y2)Cov(y1,y3)Cov(y2,y3)Cov(y3,y3)Cov(yT,y3)Cov(y1,yT)Cov(y2,yT)Cov(y3,yT)Cov(yT,yT) = (1+θ12)σϵ2θ1σϵ2000θ1σϵ2(1+θ12)σϵ2θ1σϵ2000θ1σϵ2(1+θ1)σϵ200000θ1σϵ2(1+θ1)σϵ2

C o v ( y t , y t ) = V a r ( y t ) = V a r ( θ 0 + θ 1 ϵ t − 1 + ϵ t ) = ( 1 + θ 1 ) σ ϵ 2 Cov(y_t,y_t)=Var(y_t)=Var(\theta_0+\theta_1\epsilon_{t-1}+\epsilon_t)=(1+\theta_1)\sigma_\epsilon^2 Cov(yt,yt)=Var(yt)=Var(θ0+θ1ϵt1+ϵt)=(1+θ1)σϵ2
C o v ( y t , y t − 1 ) = C o v ( θ 0 + θ 1 ϵ t − 1 + ϵ t , θ 0 + θ 1 ϵ t − 2 + ϵ t − 1 ) = C o v ( θ 1 ϵ t − 1 , ϵ t − 1 ) = θ 1 σ ϵ 2 Cov(y_t,y_{t-1})=Cov(\theta_0+\theta_1\epsilon_{t-1}+\epsilon_t,\theta_0+\theta_1\epsilon_{t-2}+\epsilon_{t-1})=Cov(\theta_1\epsilon_{t-1},\epsilon_{t-1})=\theta_1\sigma_\epsilon^2 Cov(yt,yt1)=Cov(θ0+θ1ϵt1+ϵt,θ0+θ1ϵt2+ϵt1)=Cov(θ1ϵt1,ϵt1)=θ1σϵ2
C o v ( y t , y t − k ) = 0 ( k > 1 ) Cov(y_t,y_{t-k})=0\quad(k>1) Cov(yt,ytk)=0(k>1)

那么,似然函数便可得到:
L ( θ ) = f θ ( y 1 , … , y T ) = 1 ( 2 π ) T ∣ Σ ∣ e x p ( − 1 2 ( y − μ ) ′ Σ − 1 ( y − μ ) ) \begin{align*} L(\theta)&=f_\theta(y_1,\ldots,y_T) \\ &=\dfrac{1}{\sqrt{(2\pi)^T|\Sigma|}}exp\left(-\dfrac{1}{2}(y-\mu)^\prime\Sigma^{-1}(y-\mu)\right) \end{align*} L(θ)=fθ(y1,,yT)=(2π)T∣Σ∣ 1exp(21(yμ)Σ1(yμ))

条件极大似然估计


给定 ϵ 0 \epsilon_0 ϵ0的情况下,可以迭代地计算出 ϵ 1 , … , ϵ T − 1 \epsilon_1,\ldots,\epsilon_{T-1} ϵ1,,ϵT1,因此:
L ( θ ) = f θ ( y 1 , … , y T ∣ ϵ 0 ) = f θ ( y 1 , … , y T ∣ ϵ T − 1 , … , ϵ 0 ) = ∏ t = 2 T f θ ( y t ∣ y t − 1 , … , y 0 , ϵ T − 1 , … , ϵ 0 ) f θ ( y 1 ∣ ϵ T − 1 , … , ϵ 0 ) = ∏ t = 2 T f θ ( y t ∣ ϵ t − 1 ) f θ ( y 1 ∣ ϵ 0 ) = ∏ t = 1 T f θ ( y t ∣ ϵ t − 1 ) \begin{align*} L(\theta)&=f_\theta(y_1,\ldots,y_T|\epsilon_0) \\ &=f_\theta(y_1,\ldots,y_T|\epsilon_{T-1},\ldots,\epsilon_0) \\ &=\prod\limits_{t=2}^Tf_\theta(y_t|y_{t-1},\ldots,y_0,\epsilon_{T-1},\ldots,\epsilon_0)f_\theta(y_1|\epsilon_{T-1},\ldots,\epsilon_0) \\ &=\prod\limits_{t=2}^Tf_\theta(y_t|\epsilon_{t-1})f_\theta(y_1|\epsilon_0)=\prod\limits_{t=1}^Tf_\theta(y_t|\epsilon_{t-1}) \end{align*} L(θ)=fθ(y1,,yTϵ0)=fθ(y1,,yTϵT1,,ϵ0)=t=2Tfθ(ytyt1,,y0,ϵT1,,ϵ0)fθ(y1ϵT1,,ϵ0)=t=2Tfθ(ytϵt1)fθ(y1ϵ0)=t=1Tfθ(ytϵt1)其中, y t ∣ ϵ t − 1 ∼ N ( θ 0 + θ 1 ϵ t − 1 , σ ϵ 2 ) y_t|\epsilon_{t-1}\sim N(\theta_0+\theta_1\epsilon_{t-1},\sigma_\epsilon^2) ytϵt1N(θ0+θ1ϵt1,σϵ2)

E ( y t ∣ ϵ t − 1 ) = θ 0 + θ 1 ϵ t − 1 + E ϵ t = θ 0 + θ 1 ϵ t − 1 E(y_t|\epsilon_{t-1})=\theta_0+\theta_1\epsilon_{t-1}+E\epsilon_t=\theta_0+\theta_1\epsilon_{t-1} E(ytϵt1)=θ0+θ1ϵt1+Eϵt=θ0+θ1ϵt1
V a r ( y t ∣ ϵ t − 1 ) = V a r ( ϵ t ) = σ ϵ 2 Var(y_t|\epsilon_{t-1})=Var(\epsilon_t)=\sigma_\epsilon^2 Var(ytϵt1)=Var(ϵt)=σϵ2

因此,似然函数可以写为:
L ( θ ) = ∏ t = 1 T 1 2 π σ ϵ 2 e x p ( − ( y t − θ 0 − θ 1 ϵ t − 1 ) 2 2 σ ϵ 2 ) L(\theta)=\prod\limits_{t=1}^T\dfrac{1}{\sqrt{2\pi\sigma_\epsilon^2}}exp(-\dfrac{(y_t-\theta_0-\theta_1\epsilon_{t-1})^2}{2\sigma_\epsilon^2}) L(θ)=t=1T2πσϵ2 1exp(2σϵ2(ytθ0θ1ϵt1)2)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

quantao_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值