(题目)(Dijkstra+枚举)路

时间限制: 1 Sec 内存限制: 128 MB

题目描述
Farmer John 热衷于散步,每天早上他都要从 1 号仓库走到 n 号仓库。 Farmer John 家的 n 个仓库被 m 条双向道路连通起来,每条道路有一个长度 w。而Farmer John 又不喜欢走路,所以他走的是从 1 号仓库到 n 号仓库的最短路。
但是 Farmer 的奶牛们总想搞点事情,他们计划着把 m 条道路的其中一条变成原来长度的 2 倍,使得 Farmer John 可能会多走一点路。
他们想知道,最多能让 Farmer John 多走多少路呢?

输入
第一行一个正整数 n,m,表示仓库个数和道路条数。
接下来 m 行,每行三个正整数,表示每条双向道路的连接的仓库和该双向道路的长度。

输出
输出只有一行,表示最多能让 Farmer John 每天早上多走多少路。

样例输入
复制样例数据
5 7
2 1 5
1 3 1
3 2 8
3 5 7
3 4 3
2 4 7
4 5 2
样例输出
2

提示
一开始的最短路为1→3→4→5,长度为1+3+2=6。
将连接3和4的边变为原来的两倍,3×2=6。
改造后的图,最短路为1→3→5,长度为1+7=8。
多走了8−6=2的路程,可以证明这是最大的答案。
对于50%的数据,1≤n≤50。
对于100%的数据,1≤n≤250,1≤m≤25000,1≤w≤106。
保证没有重边。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=300;
const int INF=0x3f3f3f3f;
bool vis[maxn];
ll d[maxn];
int way[maxn][maxn];
int path[maxn];
int n,m,u,v,w;
bool once=true;
void Dijkstra()
{
    memset(vis,false,sizeof(vis));
    d[1]=0;
    for(int i=2;i<=n;i++)
        d[i]=INF;
    for(int i=1;i<=n;i++)
    {
        int x,m=INF;
        for(int j=1;j<=n;j++)
        {
            if(!vis[j]&&d[j]<=m)
            {
                m=d[j];
                x=j;
            }
        }
        vis[x]=true;
        for(int y=1;y<=n;y++)
        {
            if(way[x][y]==0)continue;
            if(d[y]>d[x]+way[x][y])
            {
                d[y]=d[x]+way[x][y];
                if(once)
                {
                    path[y]=x;
                }
            }
        }
    }
}
int main()
{
    scanf("%d %d",&n,&m);
    for(int i=0;i<m;i++)
    {
        scanf("%d %d %d",&u,&v,&w);
        way[u][v]=w;
        way[v][u]=w;
    }
    Dijkstra();
    ll minway=d[n];
    once=false;
    int pos=n;
    ll maxminway=minway;
    while(true)
    {
        way[pos][path[pos]]<<=1;
        way[path[pos]][pos]<<=1;
        Dijkstra();
        if(d[n]>maxminway)maxminway=d[n];
        way[pos][path[pos]]>>=1;
        way[path[pos]][pos]>>=1;
        if(pos==1)break;
        else pos=path[pos];
    }
    printf("%lld\n",maxminway-minway);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值