微软笔试题 跳台阶问题

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/ClamReason/article/details/7853170

题目  : 一个台阶有n个台阶。每次可以上一个台阶,也可以上两个台阶。有多少种不同的上法?

可以这么递归的来考虑,第一次跳一个台阶,这种情况的跳法总数是后面的跳法总数f(n-1);第一次跳两个台阶,这种情况下跳法总数是后面的跳法总数f(n-2);所以全部的跳法数就是

f(n)=f(n-1)+f(n-2),n>2

f(1)=1,n=1

f(2)=2;n=2

这正是Fibonacci数列,可以很快写出它的递归函数

long long Fibonacci(unsigned int n)
{
	if (n==1)
	{
		return 1;
	}
	else if (n==2)
	{
		return 2;
	}
	else
	{
		return Fibonacci(n-1)+Fibonacci(n-2);
	}
}

这种看似简洁的方法却有着惊人的函数增长率,这个函数式成指数增长的。不信你运行一个大点的n试试

下面用面向对象的方式重写,运行时间为O(n)

class Fibonacci
{
public:
	Fibonacci():a(0),b(1){}
	long long operator()(void)
	{
		long long t=a;
		a=b;
		b=t+b;
		return a;
	}
private:
	long long  a,b;
};

int main( void ) 
{
	Fibonacci fibonacci;
	for (int i=1;i<=15;i++)
	{
		cout<<i<<" : "<<fibonacci()<<endl;
	}
	return 0;
}
上面的这个解决办法在C++的书上看到的。

这个问题还有一个O(1)的办法,就是求出通项公式,直接带入项数,这里就不给出了。本人也没搞懂。

展开阅读全文

没有更多推荐了,返回首页