最小费用流——原始对偶(Primal-Dual)

本文介绍EK算法及其Primal-Dual改进版本,详细解释了如何通过使用SPFA寻找最小费用增广路径,以及如何通过节点标号和Dinic类似的方法实现多路径同时增广,提供了一个具体的代码实现。
摘要由CSDN通过智能技术生成

EK算法的改进版,不知道名字(也许是ZKW??)
现在知道名字了,原始对偶(Primal-Dual)

EK算法

EK算法就是不断的用SPFA寻找一条最小费用的增广路径,直到无法增广为止。

改进

类似于Dinic,先将结点用到汇点T的最短距离标号,每次只走dis[v]==dis[u]+cost[u->v]的边进行增广,保证了费用最小。
在这种情况下,就可以类似Dinic,同时增广多条路径。

细节较多,见代码及注释

代码

#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;
const int INF=0x3F3F3F3F;

namespace CostFlow
{
    const int MAX_NODE=505,MAX_EDGE=250005;
    struct Edge
    {
        int v,cap,val;
        Edge *nxt,*bck;
        Edge(){}
        Edge(int _v,int _c,int _val,Edge *n,Edge *b)
        {v=_v;cap=_c;val=_val;nxt=n;bck=b;}
    }edges[MAX_EDGE*2],*adj[MAX_NODE],*adj2[MAX_NODE],*ed_it=edges;

    void AddEdge(int u,int v,int c,int val)
    {
        *ed_it=Edge(v,c,val,adj[u],ed_it+1);
        adj[u]=ed_it;
        ed_it++;
        *ed_it=Edge(u,0,-val,adj[v],ed_it-1);
        adj[v]=ed_it;
        ed_it++;
    }

    deque<int> Q;
    int dis[MAX_NODE];
    bool inq[MAX_NODE],vis[MAX_NODE];
    int value;

	//dfs增广
    int aug(int u,int T,int augco=0x3F3F3F3F)
    {
        if(u==T)
            return augco;
        int augc=augco;
        vis[u]=true;
		/*
		由于存在反向边,费用为相反数
		所以有可能通过反向边走回之前走过的路径
		必须用vis数组记录走过的点,防止形成环
		这一点与Dinic不同
		*/
        for(Edge *&e=adj2[u];e;e=e->nxt)//Dinic常规操作,用引用记录上一次枚举到的边
            if(e->cap>0&&!vis[e->v]&&dis[e->v]==dis[u]-e->val)//判断dis标号
            {
                int delta=min(e->cap,augc);
                delta=aug(e->v,T,delta);
                e->cap-=delta;
                e->bck->cap+=delta;
                augc-=delta;
                value+=delta*e->val;//这里记录费用
                if(augc==0)
                    break;
            }
		vis[u]=false;
        return augco-augc;//返回增广流量
    }
    bool relable(int S,int T)
    {
        memset(dis,0x3F,sizeof dis);
        dis[T]=0;
        Q.push_front(T);inq[T]=true;
        while(!Q.empty())
        {
            int u=Q.front();
            Q.pop_front();inq[u]=false;
            for(Edge *e=adj[u];e;e=e->nxt)
                if(e->bck->cap)
				//因为是倒着走,但实际增广是正着走的
				//所以这里应该判断反向边是否有流量
                {
                    int v=e->v;
                    if(dis[v]>dis[u]-e->val)
					//正向边的费用为反向边的相反数,所以为减号
                    {
                        dis[v]=dis[u]-e->val;
                        if(!inq[v])
                        {
							//SLF优化(实际作用不大)
                            if(Q.empty()||dis[v]<dis[Q.front()])
                                Q.push_front(v);
                            else
                                Q.push_back(v);
                            inq[v]=true;
                        }
                    }
                }
        }
        return dis[S]<INF;//S与T连通
    }

    void Solve(int S,int T,int &ans_flow,int &ans_val)
    {
        ans_flow=ans_val=0;
        while(relable(S,T))//进行dis标号
        {
            memset(vis,0,sizeof vis);
            memcpy(adj2,adj,sizeof adj);
            ans_flow+=aug(S,T);//增广
        }
        ans_val=value;
    }
}

int main()
{
	int n,m;
	scanf("%d%d",&n,&m);
	for(int i=1;i<=m;i++)
	{
		int u,v,c,w;
		scanf("%d%d%d%d",&u,&v,&c,&w);
		CostFlow::AddEdge(u,v,c,w);
	}
	int flow,val;
	CostFlow::Solve(1,n,flow,val);
	printf("%d\n",val);
	return 0;
}

拉格朗日表达式在优化理论中扮演着重要角色,尤其是在处理约束最优化问题时。当涉及到对偶问题时,通常是指原问题(Primal Problem)与其对应的对偶问题(Dual Problem)。这里介绍如何利用拉格朗日乘子法构建拉格朗日函数来形成一个对偶问题,并简述求解过程。 对于给定的一个最小化目标函数$f(x)$加上$m$个不等式约束$g_i(x)\leq 0, i=1,\ldots,m$和$p$个等式约束$h_j(x)=0,j=1,\ldots,p$的问题,可以构造出如下形式的拉格朗日函数$L(x,\lambda,\nu)$: $$L(x,\lambda,\nu) = f(x)+\sum_{i=1}^{m}\lambda_ig_i(x)+\sum_{j=1}^{p}\nu_jh_j(x),$$ 其中$\lambda_i \geq 0$是对应于不等式约束的拉格朗日乘子,而$\nu_j$则是对应于等式约束的拉格朗日乘子。 为了从这个原始问题得到对偶问题,考虑定义对偶函数$d(\lambda,\nu)$为: $$d(\lambda,\nu) = \inf_x L(x,\lambda,\nu).$$ 接下来,最大化此对偶函数以获得对偶问题: $$\max d(\lambda,\nu) \\ s.t.\quad \lambda_i \geq 0.$$ 解决对偶问题是找到一组最优的$(\lambda^*,\nu^*)$使得$d(\lambda^*,\nu^*)$最大。一旦找到了这样的参数集,就可以用来估计原始问题的下界或者直接用于某些情况下寻找$x*$——即满足原始问题的最佳解。 在实际应用中,可以通过梯度上升法或其他凸优化算法来迭代地更新$\lambda$和$\nu$直到收敛至最佳值。此外,在强对偶条件下(例如Slater's condition),如果原始问题是凸的,则原始问题与对偶问题之间的差距为零,意味着可以直接通过对偶问题获取原始问题的答案。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CaptainHarryChen

随便

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值