原始-对偶(Primal-Dual)算法求解线性规划

​原始-对偶(Primal-Dual)算法(Dantzig, Ford, and Fulkerso,1956)是用来求解线性规划的一种算法,可以看作是单纯形法的一种变体,目的是减少迭代次数。

构建该算法的核心依据为原问题和对偶问题的最优解满足的互补松弛关系。
考虑以下线性规划问题 P P P
min ⁡ c T x s . t .   A x ⩾ b x ⩾ 0 \min \quad \boldsymbol{c}^T\boldsymbol{x} \\ s.t.\,\qquad \quad \\ \qquad \boldsymbol{Ax}\geqslant \boldsymbol{b} \\ \qquad \boldsymbol{x}\geqslant \mathbf{0} mincTxs.t.Axbx0

和他的对偶问题 D D D
max ⁡ b T y s . t .   A T y ⩽ c y ⩾ 0 \max \quad \boldsymbol{b}^T\boldsymbol{y} \\ s.t.\,\qquad \quad \\ \qquad \boldsymbol{A^{T}y}\leqslant \boldsymbol{c} \\ \qquad \boldsymbol{y}\geqslant \mathbf{0} maxbTys.t.ATycy0

其中 A \boldsymbol{A} A m × n m\times n m×n的矩阵, b \boldsymbol{b} b c \boldsymbol{c} c 都大于0。

假设 x \boldsymbol{x} x y \boldsymbol{y} y 分别是问题 P P P, D D D 的可行解,判断 x \boldsymbol{x} x y \boldsymbol{y} y 是否为最优解,需要同时考虑两种互补松弛条件:

  • 第一种:primal complementary slackness conditions
    x j > 0 ⇒ A j y = c j ( 1 ) A j y < c j ⇒ x j = 0 ( 2 ) x_j>0\Rightarrow A^jy=c_j\qquad \left( 1 \right) \\ A^jy<c_j\Rightarrow x_j=0\qquad \left( 2 \right) xj>0Ajy=cj(1)Ajy<cjxj=0(2)
    其中 A j \boldsymbol{A^j} Aj 表示系数矩阵的第 j j j 列。

    (1)表示,当原问题的可行解 x j > 0 x_j>0 xj>0 时,它对应的对偶问题的约束为紧约束(等号成立)。
    (2)表示,当对偶问题的某个约束为松约束时,它对应的原问题的可行解 x j = 0 x_j=0 xj=0

​- 第二种:dual complementary slackness conditions
y i > 0 ⇒ A i x = b i ( 3 ) A i x < b i ⇒ y i = 0 ( 4 ) \\ y_i>0\Rightarrow A_ix=b_i\qquad \left( 3 \right) \\ \\ A_ix<b_i\Rightarrow y_i=0\qquad \left( 4 \right) yi>0Aix=bi(3)Aix<biyi=0(4)
​其中 A i \boldsymbol{A_i} Ai 表示系数矩阵的第 i i i 行。

可以从经济分析的角度理解这一条件:
假设原问题是形如 D D D 的资源分配模型, c \boldsymbol{c} c 为资源限额,此时每条供给约束都对应着一个影子价格。影子价格的定义是:管理层愿意为获取额外一定单位的既定资源而多付出的最大价格。

表达式 (3)表示当影子价格大于0时,表示在现有基础资源限额上,每增加一单位资源,收益便会改善,说明现有资源已经被消耗殆尽,约束为紧约束;

表达式(4)说明假如当前资源过剩,并不稀缺时,说明并不需要获取额外单位的既定资源,因此影子价格为0 。

只有当上述条件 (1)~(4) 全部同时满足的时候, x \boldsymbol{x} x y \boldsymbol{y} y 才会是最优解。

因此,为了找到最优解,首先需要找到能够满足上述条件的松、紧约束的下标集合。这里考虑两种集合:
J = { j    ∣    y A j = c j } I = { i    ∣    y i = 0 } J = \{j \;|\;\boldsymbol{y}\boldsymbol{A}^j=c_j\}\\ I = \{i \;|\;y_i=0\} J={ jy

  • 4
    点赞
  • 32
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 这是一个用简单线性迭代法(Primal-Dual Interior-Point Method)解决线性规划的 Python 实现: ```python import numpy as np def linear_programming(c, A, b, x_0, mu=10, max_iter=1000, tol=1e-8): m, n = A.shape x = x_0 z = np.dot(A, x) - b t = mu * np.ones(m) for i in range(max_iter): s = np.diag(t) @ z y = np.linalg.inv(A @ np.diag(t) @ A.T) @ (c - s) x_new = x + np.dot(np.diag(t), y - x) z_new = np.dot(A, x_new) - b t_new = t * np.maximum(0, (z / z_new) ** 3) if np.linalg.norm(x_new - x) < tol: break x, z, t = x_new, z_new, t_new return x ``` 这里的 c, A, b 分别表示目标函数系数,约束系数矩阵和约束右侧值;x_0 是初始解;mu 是初始对偶问题的初始步长;max_iter 是最大迭代次数;tol 是精度要求。 ### 回答2: 线性规划问题是通过线性目标函数和一组线性约束条件来最大化或最小化目标函数的值的问题。迭代法是一种不断逼近最优解的方法。 下面是一个使用Python编写的不需要对偶算法线性规划迭代法的示例: ```python import numpy as np def linear_programming_iterative(c, A, b, iterations=100, step_size=0.01): m, n = A.shape x = np.zeros(n) for _ in range(iterations): gradient = np.dot(A.T, np.dot(A, x) - b) # 计算梯度 x -= step_size * gradient # 更新变量 x = np.clip(x, 0, None) # 对解进行截断,保证非负性 objective_value = np.dot(c, x) #计算目标函数的值 return x, objective_value # 示例数据 c = np.array([3, 4]) # 目标函数的系数 A = np.array([[1, 1], [2, 1], [1, 0]]) # 约束条件的系数矩阵 b = np.array([5, 8, 3]) # 约束条件的值 x_optimal, objective_value = linear_programming_iterative(c, A, b) print("最优解:", x_optimal) print("目标函数的最优值:", objective_value) ``` 在该示例中,`linear_programming_iterative`函数使用梯度下降法来不断迭代更新解向量`x`直到收敛。梯度计算通过`np.dot()`函数进行矩阵乘法运算实现。截断操作使用`np.clip()`函数来确保解向量的非负性。 最后,输出最优解和目标函数的最优值。 ### 回答3: 线性规划求解最优化问题的一种常用方法,而对偶算法是解决线性规划问题的一种重要算法。然而,在某些情况下,我们可能希望使用不需要对偶算法线性规划迭代法来求解最优化问题。 使用Python编写一个不使用对偶算法线性规划迭代法可以通过以下步骤实现: 1. 定义问题的目标函数和约束条件。目标函数和约束条件可以通过线性代数的方式来表示,例如使用矩阵和向量的形式。 2. 初始化变量和参数。将问题的目标函数和约束条件转化为等式约束条件,并初始化迭代所需的变量和参数。例如,初始化变量和参数包括系数矩阵、约束向量、目标向量、迭代步长等。 3. 进行迭代计算。根据迭代步骤,使用特定的迭代公式来更新变量和参数的值,从而逐步逼近最优解。可以使用循环结构来实现迭代计算,直到满足终止条件为止。 4. 终止迭代。根据设定的终止条件,判断是否满足终止条件,如果满足,则停止迭代计算,否则继续进行迭代计算。 5. 输出最优解。在终止迭代之后,获得最优解并输出,可以根据需要进行结果的进一步处理和分析。 总之,通过定义问题的目标函数和约束条件,初始化变量和参数,进行迭代计算,终止迭代并输出最优解,即可编写一个不使用对偶算法线性规划迭代法。该方法能够通过迭代计算逐步逼近最优解,用较少的运算成本得到可行解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值