汉诺塔问题是一个解决方法满足递归结构的典型问题,通过这个例子的学习,可以很好地理解递归的概念。而且利用高中所学的数列知识,可以求出对应n个圆盘数目,需要移动的步数,可以发现当n=64时,移动步数已经是比天文数字还天文数字的天文数字。
#include<stdio.h>
//Hanoi问题的递归求解void main()
{
void towerOfHanoi(int n,char from,char to,char aux);
int a;//圆盘的个数
("请输入圆盘的数目");
scanf("%d",&a);
towerOfHanoi(a,'A','C','B');//A,B,C分别代表3个柱子
}
void towerOfHanoi(int n,char from,char to,char aux)
{
if(n==1)
{
printf("1 from %c to %c\n",from,to);
return;
}//只有一个圆盘直接从第一个柱子移到第三个柱子
towerOfHanoi(n-1,from,aux,to);//圆盘数目大于1时用第三个柱子过渡,把第一个柱子的n-1个圆盘放到第二个上面
printf("%d from %c to %c\n",n,from,to);//将第一个柱子上最下面的圆盘放到第三个柱子
towerOfHanoi(n-1,aux,to,from);//将已经放到第二个柱子上的n-1个圆盘,通过第一个柱子做过渡,放到第三个柱子上面
}