Ubuntu16.04 cuda8.0 cudnn v5.1 caffe py-faster-rcnn配置

1.安装Ubuntu16.04

通过制作u盘启动盘安装Ubuntu16.04
u盘启动盘制作工具下载地址:
链接:http://pan.baidu.com/s/1pLn301t 密码:zjed
Ubuntu16.04 ios文件下载地址:
链接:http://pan.baidu.com/s/1bpAmAzP 密码:qu2s
制作教程:打开下载的u盘制作工具,选择ios文件,点击开始即可。重启电脑选择u盘启动,选择安装Ubuntu,按默认选项就好。
安装好重启,在windows下利用EasyBCD软件如图所示设置开机启动项。

EasyBCD下载地址:
链接:http://pan.baidu.com/s/1eSbAzLo 密码:7hlk
重启进入Ubuntu系统,打开软件和更新,更新服务源,我选的阿里的服务器。

2.安装NVIDIA显卡驱动

这里写图片描述
终端输入 nvidia-smi
显示驱动信息

3.安装CUDA8.0

NVIDIA的CUDA下载网站正在维护进不去,这里给出CUDA8.0的下载地址:
链接:http://pan.baidu.com/s/1jIb2yKQ 密码:n0qa
进到你下载好的cuda-8.0的run文件目录,运行
sudo sh cuda_8.0.27_linux.run

注意:执行后会有一些提示让你确认,在第二个提示的地方,有个让你选择是否安装驱动时(Install NVIDIA Accelerated Graphics Driver for Linux-x86_64 361.62?),选择否:因为前面我们已经安装过驱动。其余的都直接默认或者选择是即可。

4.安装cuDNN v5.1

这里给出cuDNN v5.1的下载地址:
链接:http://pan.baidu.com/s/1geFnQ3x 密码:vn9c
下载之后进入到下载文件所在文件夹,解压,进入cuda文件夹下,并执行相关文件的拷贝:

tar -zxvf cudnn-8.0-linux-x64-v5.0-ga.tgz(或你的版本对应的压缩包)
cd cuda
sudo cp lib64/lib* /usr/local/cuda/lib64/
sudo cp include/cudnn.h usr/local/cuda/include/

然后更新软连接:

cd /usr/local/cuda/lib64/
sudo chmod +r libcudnn.so.5.1.10(或你自己的版本对应的)
sudo ln -sf libcudnn.so.5.1.10 libcudnn.so.5  
sudo ln -sf libcudnn.so.5 libcudnn.so  
sudo ldconfig

如果遇到问题百度之,我遇到了一个需要重新建立连接的问题,百度有解决方案。

5.添加环境变量

编辑计算机文件夹下的/etc/profile(可以在终端使用以下命令行打开):

sudo gedit /etc/profile

在文件末尾加入CUDA环境变量,保存。

PATH=/usr/local/cuda/bin:$PATH
export PATH

保存后在终端执行以下命令使其生效:

source /etc/profile

然后,进入到/etc/ld.so.conf.d/文件夹下,执行以下命令,新建了一个cuda.conf文件

sudo gedit cuda.conf

在文件中写入并保存:

/usr/local/cuda/lib64

保存后使其生效:

sudo ldconfig

6.Build CUDA Sample

进入usr/local/cuda/samples,然后build samples,命令如下:

sudo make all -j4

继续进入到samples/bin/x86_64/linux/release目录下,在终端执行查询命令:

./deviceQuery

如果返回你电脑显卡信息,结尾有Result=PASS,则安装成功,否则,换篇Blog重新开始吧。

7.安装caffe的基本依赖库

sudo apt-get install git
sudo apt-get install build-essential
sudo apt-get python

然后安装caffe依赖库,建议一个一个装

sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libboost-all-dev libhdf5-serial-dev libgflags-dev libgoogle-glog-dev liblmdb-dev protobuf-compiler libatlas-base-dev

8.安装opencv

安装opencv可以选择源码安装和脚本安装,脚本安装OpenCV2.4.10比较方便 opencv2.4下载
下载安装包后,解压后进入Install-OpenCV/Ubuntu/2.4,然后执行脚本文件:

sudo ./opencv2_4_10.sh

编译时间比较长,可以去喝杯咖啡,编译到最后报了几个错,没有理会它,没有影响后面的使用。

9.caffe及py-faster-rcnn配置

下载py-faster-rcnn

git clone --recursive https://github.com/rbgirshick/py-faster-rcnn

先编译lib目录下的代码

cd py-faster-rcnn
cd lib
make

编译caffe

py-faster-rcnn里caffe-fast-rcnn的版本还不支持cudnn5.1,这里要用git这个版本管理工具来先进行caffe版本的更新。

在使用git之前,需要先设置用户名和地址

git config --global user.email "you@example.com"

git config --global user.name "Your Name"

设置完成后进行caffe版本更新

 cd caffe-fast-rcnn
 git remote add caffe https://github.com/BVLC/caffe.git
 git fetch caffe
 git merge  caffe/master

然后输入修改说明,保存修改,可以去稍微查一下git怎么用。
在合并之后注释掉include/caffe/layers/python_layer.hpp文件里的self_.attr(“phase”) = static_cast(this->phase_)

执行caffe的编译

cd caffe-fast-rcnn
make -j8
make pycaffe

到这里caffe以及py-faster-rcnn基本就配置好了。

参考链接:
http://blog.csdn.net/sinat_14916279/article/details/53844963
http://www.cnblogs.com/zjutzz/p/6034408.html
http://www.jianshu.com/p/9137efc1bd8f
只是记录一下过程,说不定以后还会用

如有雷同,算我抄你

下一篇准备些py-faster-rcnn的使用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值