1.安装Ubuntu16.04
通过制作u盘启动盘安装Ubuntu16.04
u盘启动盘制作工具下载地址:
链接:http://pan.baidu.com/s/1pLn301t 密码:zjed
Ubuntu16.04 ios文件下载地址:
链接:http://pan.baidu.com/s/1bpAmAzP 密码:qu2s
制作教程:打开下载的u盘制作工具,选择ios文件,点击开始即可。重启电脑选择u盘启动,选择安装Ubuntu,按默认选项就好。
安装好重启,在windows下利用EasyBCD软件如图所示设置开机启动项。
EasyBCD下载地址:
链接:http://pan.baidu.com/s/1eSbAzLo 密码:7hlk
重启进入Ubuntu系统,打开软件和更新,更新服务源,我选的阿里的服务器。
2.安装NVIDIA显卡驱动
终端输入 nvidia-smi
显示驱动信息
3.安装CUDA8.0
NVIDIA的CUDA下载网站正在维护进不去,这里给出CUDA8.0的下载地址:
链接:http://pan.baidu.com/s/1jIb2yKQ 密码:n0qa
进到你下载好的cuda-8.0的run文件目录,运行
sudo sh cuda_8.0.27_linux.run
注意:执行后会有一些提示让你确认,在第二个提示的地方,有个让你选择是否安装驱动时(Install NVIDIA Accelerated Graphics Driver for Linux-x86_64 361.62?),选择否:因为前面我们已经安装过驱动。其余的都直接默认或者选择是即可。
4.安装cuDNN v5.1
这里给出cuDNN v5.1的下载地址:
链接:http://pan.baidu.com/s/1geFnQ3x 密码:vn9c
下载之后进入到下载文件所在文件夹,解压,进入cuda文件夹下,并执行相关文件的拷贝:
tar -zxvf cudnn-8.0-linux-x64-v5.0-ga.tgz(或你的版本对应的压缩包)
cd cuda
sudo cp lib64/lib* /usr/local/cuda/lib64/
sudo cp include/cudnn.h usr/local/cuda/include/
然后更新软连接:
cd /usr/local/cuda/lib64/
sudo chmod +r libcudnn.so.5.1.10(或你自己的版本对应的)
sudo ln -sf libcudnn.so.5.1.10 libcudnn.so.5
sudo ln -sf libcudnn.so.5 libcudnn.so
sudo ldconfig
如果遇到问题百度之,我遇到了一个需要重新建立连接的问题,百度有解决方案。
5.添加环境变量
编辑计算机文件夹下的/etc/profile(可以在终端使用以下命令行打开):
sudo gedit /etc/profile
在文件末尾加入CUDA环境变量,保存。
PATH=/usr/local/cuda/bin:$PATH
export PATH
保存后在终端执行以下命令使其生效:
source /etc/profile
然后,进入到/etc/ld.so.conf.d/文件夹下,执行以下命令,新建了一个cuda.conf文件
sudo gedit cuda.conf
在文件中写入并保存:
/usr/local/cuda/lib64
保存后使其生效:
sudo ldconfig
6.Build CUDA Sample
进入usr/local/cuda/samples,然后build samples,命令如下:
sudo make all -j4
继续进入到samples/bin/x86_64/linux/release目录下,在终端执行查询命令:
./deviceQuery
如果返回你电脑显卡信息,结尾有Result=PASS,则安装成功,否则,换篇Blog重新开始吧。
7.安装caffe的基本依赖库
sudo apt-get install git
sudo apt-get install build-essential
sudo apt-get python
然后安装caffe依赖库,建议一个一个装
sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libboost-all-dev libhdf5-serial-dev libgflags-dev libgoogle-glog-dev liblmdb-dev protobuf-compiler libatlas-base-dev
8.安装opencv
安装opencv可以选择源码安装和脚本安装,脚本安装OpenCV2.4.10比较方便 opencv2.4下载
下载安装包后,解压后进入Install-OpenCV/Ubuntu/2.4,然后执行脚本文件:
sudo ./opencv2_4_10.sh
编译时间比较长,可以去喝杯咖啡,编译到最后报了几个错,没有理会它,没有影响后面的使用。
9.caffe及py-faster-rcnn配置
下载py-faster-rcnn
git clone --recursive https://github.com/rbgirshick/py-faster-rcnn
先编译lib目录下的代码
cd py-faster-rcnn
cd lib
make
编译caffe
py-faster-rcnn里caffe-fast-rcnn的版本还不支持cudnn5.1,这里要用git这个版本管理工具来先进行caffe版本的更新。
在使用git之前,需要先设置用户名和地址
git config --global user.email "you@example.com"
git config --global user.name "Your Name"
设置完成后进行caffe版本更新
cd caffe-fast-rcnn
git remote add caffe https://github.com/BVLC/caffe.git
git fetch caffe
git merge caffe/master
然后输入修改说明,保存修改,可以去稍微查一下git怎么用。
在合并之后注释掉include/caffe/layers/python_layer.hpp文件里的self_.attr(“phase”) = static_cast(this->phase_)
执行caffe的编译
cd caffe-fast-rcnn
make -j8
make pycaffe
到这里caffe以及py-faster-rcnn基本就配置好了。
参考链接:
http://blog.csdn.net/sinat_14916279/article/details/53844963
http://www.cnblogs.com/zjutzz/p/6034408.html
http://www.jianshu.com/p/9137efc1bd8f
只是记录一下过程,说不定以后还会用
如有雷同,算我抄你
下一篇准备些py-faster-rcnn的使用。