参考论文:OpenPose: Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields
原文地址:https://arxiv.org/abs/1611.08050
源码地址:https://github.com/CMU-Perceptual-Computing-Lab/openpose
主要方法:
使用非参数表示的方法,我们称之为部分亲和域【PAFs】,用它来学习怎么将身体部分和图像中的个体联系起来。
自下而上
算法流程:
整个检测过程如上图所示,输入一幅图像,然后经过7个stage,得到PCM和PAF。然后根据PAF生成一系列的偶匹配,由于PAF自身的矢量性,使得生成的偶匹配很正确,最终合并为一个人的整体骨架。
网络结构:
a.经过VGG-19的前10层网络得到一个特征度F
b.网络分成两个循环分支&