基于部分亲和字段PAF的实时多人2D图像姿态估计(OpenPose)

参考论文:OpenPose: Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields

原文地址:https://arxiv.org/abs/1611.08050

源码地址:https://github.com/CMU-Perceptual-Computing-Lab/openpose

主要方法:

使用非参数表示的方法,我们称之为部分亲和域【PAFs】,用它来学习怎么将身体部分和图像中的个体联系起来。

自下而上

算法流程:

整个检测过程如上图所示,输入一幅图像,然后经过7个stage,得到PCM和PAF。然后根据PAF生成一系列的偶匹配,由于PAF自身的矢量性,使得生成的偶匹配很正确,最终合并为一个人的整体骨架。

网络结构:

a.经过VGG-19的前10层网络得到一个特征度F 

b.网络分成两个循环分支&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值