引言:作为一名程序员,想必大家都有了解过爬虫的基本原理,也写过一些简单的爬虫程序。但要想成为爬虫高手,需要更深入的学习和实践。本文将带领大家探究爬虫高阶技巧,从入门到精通的学习资料,让你成为实战型的爬虫攻略专家!
一、进阶知识点
1. 爬虫反反爬
爬虫反爬是指网站主动限制爬取行为。然而,经过对反爬技术的深入研究,我们可以解决常见的验证码、IP封锁、UA识别、请求频率等问题。其中,绕过验证码最常见的方法是OCR识别验证码,绕过IP封锁可以使用高匿代理IP,绕过UA识别可以伪造UA,绕过请求频率可以使用代理池等技巧。
2. 存储技巧
爬虫获取的数据需要进行存储,而存储方式也直接影响爬虫效率。常见的存储方式有文本文件、数据库、云服务器等。其中,数据库更适合大规模数据爬取,如MySQL、MongoDB等。云服务器则可以保证数据存储和备份的稳定性和安全性。
3. 并发优化
当对一个网站进行大量数据的爬取时,需要处理的请求数量是非常大的。这时,单线程请求必然会成为瓶颈,进而导致爬取效率低下。为此,我们要学习使用多线程或协程等技术,以加速对目标网站的请求,提高爬虫效率。其中,协程可以实现更高效的并发请求,如异步IO模型等。
二、示范演练
1. 爬取淘宝商品数据
要想获取淘宝商品的数据,首先要搜索感兴趣的商品,然后解析HTML页面,获取商品的信息,如商品名称、价格、销量、评价等。贴上Python爬虫代码示例:
import requests
from bs4 import BeautifulSoup
def getHTMLText(url, kv):
try:
r = requests.get(url, params=kv)
r.raise_for_status()
r.encoding = r.apparent_encoding
return r.text
except:
return ""
def parsePage(ilt, html):
try:
soup = BeautifulSoup(html, "html.parser")
plist = soup.find_all('div', {
'class':'item'})
for item in plist:
info = []
try:
info.append(item.find('div', {
'class':'title'}).string.strip())
info.append(item.find('div', {
'class':'price'}).strong.string)
ilt.append(info)
except:
continue
except:
return ""
def printGoodsList