#每日一题2018/3/23

LeetCode 5

2017年算法上机的终焉之战的某道题,sy老师课上提过最直观的解法,感谢助教亲切放水~

第一反应:求串的逆置,然后求原串和逆置串的最长相同子串,时间O(nlgn)

首先借此复习一下最长公共子序列和最长公共子串的解法:

最长公共子序列转移方程:

  • dp[i][j]=dp[i-1][j-1]+1  (if  a[i]==b[j]

dp[i][j]=max(dp[i-1][j],dp[i][j-1])  (if(a[i]!=b[j])

最长公共子串转移方程:

dp[i][j]=dp[i-1][j-1]+1  (if  a[i]==b[j])

dp[i][j]=0(if(a[i]!=b[j])

在博客上找到了最长回文子串的动态规划转移方程,妙不可言

dp[i][j]= true  if(j==i)

s[i]==s[j](if  i-j=1)

s[i]==s[j]&&dp[j+1][i-1] (if i-j>1)

腊鸡网每次打到兴致勃勃想要马上提交看有没有AC的时候,leetcode就被墙掉了

好了总之dp方法代码如下:

class Solution {
public:
    string longestPalindrome(string s) {
        int length=s.size();
        int dp[length][length];
        int start=0;
        int maxlen=0;
        memset(dp,0,sizeof(dp));
        for(int i=0;i<length;i++)
        {
        	for(int j=0;j<=i;j++)
        	{
        		if(i==j)
        		{
        			if(s[i]==s[j])
        			{
        				dp[j][i]=1;
					}
				}
				else if(i-j==1)
				{
					if(s[i]==s[j])
					{
						dp[j][i]=1;
					}
				}
				else
				{
					if(s[i]==s[j]&&dp[j+1][i-1])
					{
						dp[j][i]=1;
					}
				}
				if(dp[j][i]&&maxlen<i-j+1)
				{
					start=j;
					maxlen=i-j+1;
				}
			}
		}
		string ans;
		ans=s.substr(start,maxlen);
		return ans;
    }
};
从zqls的专栏知道了Manacher线性时间的方法

emmmm懵逼,暂且不多纠缠,没这么焦躁了再看


leetcode 6找规律 不赘述

leetcode 7反转数字 思路基础,但是!!!需要溢出判断!!!

class Solution {
public:
    int reverse(int x) {
        int ans=0;
        int temp=0;
        while(x!=0)
        {
        	temp=x%10;
        	x=x/10;
        	if(ans>INT_MAX/10||ans<INT_MIN/10)//very important!!!
        	{
        		return 0;
			}
			ans=ans*10+temp;
		}
		return ans;
    }
};


LeetCode 8

限制条件真的多到爆炸,怕不是考察条件判断的题吧

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值