主题抽取和推荐的联系和差别

我们经常会看到,很多文章在对数据做聚类或者分类,也就是说从数据中抽取出主题或者兴趣,这个是一个概括的过程。

而推荐则是一个预测的过程,即我已经知道你对A感兴趣,虽然你目前没有关注过B,C,D,但是基于关联关系,我觉得A和B关系很密切,和C关系较密切,和D关系一般密切,这完成了预测。而后是推荐过程,即推荐前一个或者前N个关系密切的兴趣给你。


也就是说,推荐应该是首先完成了主题提取,或者是打标签,即首先定位一下,你对什么感兴趣。然后,看看你目前没有关注过的兴趣你最可能感兴趣的有那些,我把这些给你推荐。


这在互联网广告中大概都叫targeting吧。只是形式不同,前者是看你对什么感兴趣,比如通过分析,发现你对服装感兴趣,你经常浏览或者点击,那么我就要投放给你服装类的广告了,比如凡客等。这是第一种形式的。


而在知道你对服装感兴趣的基础上,我可能猜测你可能是女性、同时又是年轻人,而我觉得服装和首饰、化妆品、零食等关联性比较大,那么我可以在投广告时投给你化妆品或者首饰等。这是第二种形式的。



阅读更多
文章标签: 互联网 c
上一篇matrix spectral, matrix factorization, lda, pca, spectral clustering
下一篇最近有点小烦
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭