第 16 章 贪心算法

  对于许多最优化问题,使用动态规划算法来求最优解有些杀鸡用牛刀了,可以使用更简单、更高效的贪心算法。它在每一步都做出当时看起来最佳的选择。也就是说,它总是做出局部最优的选择,寄希望这样的选择能导致全局最优解。
  贪心算法并不保证得到最优解,但对很多问题确实可以求得最优解。活动选择问题就是可以用贪心算法得到最优解。
 

16.1 活动选择问题

  假定有一个 n 个活动的集合S={ a1,a2,...,an },这些活动使用同一个资源(例如阶梯教室),而这个资源在某个时刻只能共一个活动使用。每个活动 ai 都有一个开始时间 si 和一个结束时间 fi ,其中 0si<fi< 。如果被选中,任务 ai 发生在半开区间 [ai,fi) 期间。如果活动 ai aj 满足 [si,fi) [sj,fi) 不重叠,则称它们时兼容的。也就是说,若 sifj sjfi ,则 ai aj 时兼容的。在活动选择问题中,希望选出一个最大兼容活动集。
假定活动已按结束时间的单调递增顺序排序:

f1f2fn1fn

   活动选择问题的最优子结构
  
   贪心选择
  直观上,应该选择这样一个活动,选出它后剩下的资源应能被尽量多的其他任务所用。现在考虑活动,应该选择S中最早结束的活动。换句话说,因为活动已按结束时间排序,贪心选择就是活动 a1 .
  因此,虽然可以用动态规划方法求解活动选择问题,但并不需要这样做。相反,可以反复选择最早结束的活动,保留与此活动兼容的活动,重复这一过程,直至不在有剩余活动。而且,因为总是选择最早结束的活动,所以选择的活动的结束时间必然时严格递增的。只需按结束时间的单调递增顺序处理所有活动,每个活动只考察一次。
  贪心算法通常都是这种自顶向下的设计:做出一个选择,然后求解剩下的那个子问题,而不是自底向上的求解出很多子问题,然后在做出选择。
   递归贪心算法
  过程RECURSIVE-ACTIVITY-SELECTOR的输入为两个数组s和f。表示活动的开始和结束时间,下标k指出要求解的子问题 Sk ,以及问题规模n。它返回一个最大兼容活动集。假定输入的n个活动已经按结束时间的单调递增顺序排列好。为了方便算法初始化,添加一个虚拟活动 a0 其结束时间 f0=0 这样子问题 S0 就是完整的活动集S。求解原问题即可调用RECURSIVE-ACTIVITY-SELECTOR(s, f, 0, n).
  RECURSIVE-ACTIVITY-SELECTOR(s, f, k, n)

m = k + 1
while m <= n and s[m] < f[k]    //find the first activity in Sk to finish
    m = m + 1
if m <= n
    return {am} U RECURSIVE-ACTIVITY-SELECTOR(s, f, m, n)
else return Ø

假定活动已经按结束时间排好序,则递归调用RECURSIVE-ACTIVITY-SELECTOR(s, f, 0, n)的运行时间为Θ(n)。
迭代贪心算法
过程GREEDY-ACTIVITY-SELECTOR是过程RECURSIVE-ACTIVITY-SELECTOR的一个迭代版本。它也假定输入活动已按结束时间单调递增顺序排好序。它将选出的活动存入集合A,并将A返回调用者。
GREEDY-ACTIVITY-SELECTOR(s,f)

n = s.length
A = {a1}
k = 1
for m = 2 to n
    if s[m] >= f[k]
        A= A U {am}
        k = m
return A

16.2 贪心算法原理

可按如下步骤设计贪心算法:

  1. 将最优化问题转化为这样的形式:对其做出一次选择后,只剩下一个子问题需要求解。
  2. 证明做出贪心选择后,原问题总是存在最优解,即贪心选择总是安全的。
  3. 证明做出贪心选择后,剩余的子问题满足性质:其最优解与贪心选择组合即可得到原问题的最优解,这样就得到了最优子结构。

贪心选择性质
贪心选择性质:可以通过做出局部最优选择来构造全局最优解。
最优子结构
如果一个问题的最优解包含其子问题的最优解,则成此问题具有最优子结构性质
贪心对动态规划
为了说明两种方法的细微差别,研究一个经典最优化问题的两个变形:
  0-1背包问题:一个正在抢劫的小偷发现了 n 个商品, 第 i 个商品价值 vi 美元, 重 wi 磅, viwi 都是整数。这个小偷希望拿走价值尽量高的商品,但他的背包最多容纳W磅中的商品,W是一个整数,他应该拿那些商品?
  在分数背包问题中,设定与0-1背包是一样的,但对每个商品,小偷可以拿走一部分.
  两个背包问题都是具有最优子结构性质。对0-1背包问题,考虑重量不超过W而价值最高的装包方案。如果将商品j从此方案中删除,则剩余商品必须是重量不超过 Wwj 的价值最高的方案。
  虽然俩那个问题相似,但可以用贪心策略求解分数背包问题,但是不能求解0-1背包问题。为了求解分数背包问题,首先计算每个商品的每磅价值 vi/wi 。遵循贪心策略,小偷首先尽量多第拿走每磅价值最高的商品。
  对于0-1背包问题,当考虑是否将一个商品装入背包时,必须比较包含此商品的子问题的解与不包含它的子问题的解,然后才能做出选择。这会导致大量的重叠子问题——动态规划标识。动态规划求解0-1背包问题:
  

//动态规划求解0-1背包

16.3 赫夫曼编码

赫夫曼编码可以很有效地压缩数据:通常可以节省20%~90%的空间。
二进制字符编码(或简称编码)。每个字符用一个唯一的二进制串表示,称为码字定长编码变长编码
前缀码
  文件最优编码方案总是对应一颗慢二叉树,即每个非叶结点都有两个孩子结点。
  给定一棵对应前缀码的树T,可以很容地第计算出编码一个文件需要多少个二进制位。对与字母边C中的每个字符c,令属性c.freq表示c在文件中出现的频率,令 dT(c) 表示c的叶节点在树中的深度。注意, dT(c) 也是字符c的码子的长度。则编码文件需要

B(T)=cCc.freqdT(c)
个二进制位,将B(T)定义为T的代价。
构造赫夫曼编码
赫夫曼设计了一个贪心算法来构造最优前缀码,别称为 赫夫曼编码。在下面给出的伪代码中,假定C是一个 n 个字符的集合,而其中每个字符c∈C都是一个对象,其属性c.freq给出了字符出现的频率。算法自底向上地构造出对应最优编码的二叉树T。
HUFFMAN(C)

n = |C|
Q = C
for i = 1 to n -1 
    allocate a new node z
    z.left = x = EXTRACT-MIN(Q)
    z.right = y = EXTRACT-MIN(Q)
    z.freq = x.freq + y.freq
    INSERT(Q,z)
return EXTRACT-MIN(Q)   

赫夫曼编码的总运行时间为O(nlgn)。
赫夫曼算法的正确性

16.4 拟阵和贪心算法

16.5 用拟阵求解任务调度问题

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值