Pytorch RNN(详解RNN+torch.nn.RNN()实现)

本文详细介绍了RNN的概念,包括其计算公式和在PyTorch中如何定义及使用RNN,涵盖了RNN的参数解释、输入输出格式以及双向RNN的理解。
摘要由CSDN通过智能技术生成

目录

 

一、RNN简介

二、RNN简介2

三、pytorch RNN

3.1    定义RNN()

3.2    定义好RNN()后参数,这里不明白,可先看下面实例,再回头看此项:

3.3    计算公式

3.4    实例:


一、RNN简介

x_{1}x_{2}x_{3}为输入值(通常为词向量),y_{1}​​​​​​​、y_{2}​​​​​​​、y_{3}​​​​​​​为输出的预测值,h_{1}​​​​​​​、h_{2}​​​​​​​、h_{3}​​​​​​​为隐藏层输出,W、U、V分别为3个权重向量。可以看出同一层每个RNN的权重W、U、V是共享的,也即为同一个W、U、V。

具体计算公式(b与c都是偏置项)

 

二、RNN简介2

​​​​​​​可以将RNN看成一个基本的神经单元;每个RNN单元输入为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值