目录
3.2 定义好RNN()后参数,这里不明白,可先看下面实例,再回头看此项:
一、RNN简介
、、为输入值(通常为词向量),、、为输出的预测值,、、为隐藏层输出,W、U、V分别为3个权重向量。可以看出同一层每个RNN的权重W、U、V是共享的,也即为同一个W、U、V。
具体计算公式(b与c都是偏置项)
二、RNN简介2
可以将RNN看成一个基本的神经单元;每个RNN单元输入为
目录
3.2 定义好RNN()后参数,这里不明白,可先看下面实例,再回头看此项:
、、为输入值(通常为词向量),、、为输出的预测值,、、为隐藏层输出,W、U、V分别为3个权重向量。可以看出同一层每个RNN的权重W、U、V是共享的,也即为同一个W、U、V。
具体计算公式(b与c都是偏置项)
可以将RNN看成一个基本的神经单元;每个RNN单元输入为