X mod f(x) (思维数位dp)

这道题目要求在给定区间[A, B]内找到满足x mod f(x) = 0的整数x的数量。输入包含测试用例数和区间AB,输出每个测试用例的解。解题关键在于使用枚举和数位DP,通过在DP过程中进行取余操作来计算符合条件的x数目。" 105571835,8298445,Linux命令教程:如何将文本追加到文件,"['Linux命令', '文件操作', '文本处理']
摘要由CSDN通过智能技术生成
Here is a function f(x):
   int f ( int x ) {
       if ( x == 0 ) return 0;
       return f ( x / 10 ) + x % 10;
   }


   Now, you want to know, in a given interval [A, B] (1 <= A <= B <= 10 9), how many integer x that mod f(x) equal to 0.

Input

   The first line has an integer T (1 <= T <= 50), indicate the number of test cases. 
   Each test case has two integers A, B. 

Output

   For each test case, output only one line containing the case number and an integer indicated the number of x. 

Sample Input

2
1 10
11 20

Sample Output

Case 1: 10
Case 2: 3

本题不容易想到的是运用枚举进行对所要凑成的数进行枚举

这样就可以在数位dp的过程中进行取余操作

dp数组记录的状态分别是数位 枚举值,当前数位值,余数;

#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
using namespace std;
int dp[11][90][90][90];//数位 枚举值,当前数位值,余数;
int a[11];
int dfs(int pos,int lim, int k,int sum,int mod)
{
    //cout<<pos<<" "<<k<<" "<<sum << " "<<mod<<endl;
    if(pos==0)
    {
        return sum==k&&mod==0;
    }
    if(!lim&&dp[pos][k][sum][mod]!=-1) return dp[pos][k][sum][mod];
    int ans=0,s;
    s=lim?a[pos]:9;
    for(int i=0;i<=s;i++)
    {
        int temp=(mod*10+i)%k;
        ans+=dfs(pos-1,lim&&i==s,k,sum+i,temp);
    }
    if(!lim) dp[pos][k][sum][mod]=ans;
    return ans;
}
int solve(long long x)
{
    int cnt=0;
    while(x!=0)
    {
        ++cnt;
        a[cnt]=x%10;
        x/=10;
    }
    int ans=0;
    for(int i=1;i<=(cnt)*9;i++)
    {
        ans+=dfs(cnt,1,i,0,0);
    }
    return ans;
}
int main()
{
    memset(dp,-1,sizeof(dp));
    int t;
    scanf("%d",&t);
    int cas=0;
    while(t--)
    {
        cas++;
        long long temp1,temp2;
        scanf("%lld%lld",&temp1,&temp2);
        //cout<<solve(temp1)<<" "<<solve(temp2)<<endl;
        printf("Case %d: %d\n",cas,solve(temp2)-solve(temp1-1));
    }
}

 

以下是使用 C 语言实现的代码: ```c #include <stdio.h> #include <string.h> const int MOD = 12345; const int MAX_DIGIT = 20; int f[MAX_DIGIT][2][MAX_DIGIT]; int count(int n) { char s[MAX_DIGIT]; sprintf(s, "%d", n); // 将数字转为字符串 int len = strlen(s); memset(f, 0, sizeof(f)); f[len][1][0] = 1; for (int i = len - 1; i >= 0; i--) { int upper_bound = s[i] - '0'; for (int j = 0; j <= 1; j++) { for (int k = 0; k <= len / 2; k++) { int& dp = f[i][j][k]; for (int d = 0; d < 10; d++) { if (j == 0 && d > upper_bound) break; if (d == 3) { dp = (dp + f[i + 1][j && (d == upper_bound)][k ^ 1]) % MOD; dp = (dp + f[i + 1][j && (d == upper_bound)][k]) % MOD; } else { dp = (dp + f[i + 1][j && (d == upper_bound)][k]) % MOD; } } } } } return f[0][0][0]; } int main() { int n; scanf("%d", &n); printf("%d\n", count(n)); return 0; } ``` 这里使用 `sprintf()` 函数将数字转为字符串,便于数位 DP 的实现。同时,由于数字的位数可能很大,我们需要使用一个二维数组 `f` 来存储状态,它的第一维表示当前正在考虑的数位,第二维表示当前选定的数字是否达到了上界,第三维表示当前已经匹配的数字 3 的个数。在转移时,我们枚举当前数位上的数字,考虑选或不选 3 两种情况,并根据上界判断是否能选当前数字。最终答案即为 $f_{0,0,0}$,也就是最高位为 0,当前已经选定的数字 3 的个数为 0 的方案数。 注意在转移时需要使用取模运算防止溢出。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值