二叉树

二叉树:是n(n≥0)个结点的有限集合,它或者是空树(n=0),或者是一个由根结点及两棵不相交的且分别称为左、右子树的二叉树组成。

二叉树的遍历:遍历是按某种策略访问树中的每个结点,且仅能访问一次的过程。

二叉树的先序遍历:自上而下,先遍历左子树再遍历右子树(顺序:1-2-4-8-9-5-10-3-6-7)


二叉树的中序遍历:自左向右,从最左边开始,按照位置从左往右依次遍历(顺序:8-4-9-2-10-5-1-6-3-7)

二叉树的后序遍历:自左向右,先走叶子结点再走根结点(顺序:8-9-4-10-5-2-6-7-3-1)

二叉树的层次遍历:自上而下,一层一层进行遍历(顺序:1-2-3-4-5-6-7-8-9-10)

感谢您的阅读,如有错误之处,敬请指出


(1)非递归定义 树(tree)是由n(n≥0)个结点组成的有限集合。n=0的树称为空树;n>0的树T: ① 有且仅有一个结点n0,它没有前驱结点,只有后继结点。n0称作树的根(root)结点。 ② 除结点外n0 , 其余的每一个结点都有且仅有一个直接前驱结点;有零个或多个直接后继结点。 (2)递归定义 一颗大树分成几个大的分枝,每个大分枝再分成几个小分枝,小分枝再分成更小的分枝,… ,每个分枝也都是一颗树,由此我们可以给出树的递归定义。 树(tree)是由n(n≥0)个结点组成的有限集合。n=0的树称为空树;n>0的树T: ① 有且仅有一个结点n0,它没有前驱结点,只有后继结点。n0称作树的根(root)结点。 ② 除根结点之外的其他结点分为m(m≥0)个互不相交的集合T0,T1,…,Tm-1,其中每个集合Ti(0≤i<m)本身又是一棵树,称为根的子树(subtree)。 2、掌握树的各种术语: (1) 父母、孩子与兄弟结点 (2) 度 (3) 结点层次、树的高度 (4) 边、路径 (5) 无序树、有序树 (6) 森林 3、二叉树的定义 二叉树(binary tree)是由n(n≥0)个结点组成的有限集合,此集合或者为空,或者由一个根结点加上两棵分别称为左、右子树的,互不相交的二叉树组成。 二叉树可以为空集,因此根可以有空的左子树或者右子树,亦或者左、右子树皆为空。 4、掌握二叉树的五个性质 5、二叉树二叉链表存储。
评论 20
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值